

<u>COURSE OVERVIEW DE1072</u> <u>Applied Structural Geology: Magnetic and Gravity Methods</u>

CEUS

(30 PDHs)

Course Title

Applied Structural Geology: Magnetic and Gravity Methods

Course Reference

DE1072

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	June 16-20, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 10-14, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	October 06-10, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	December 14-18, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview on Applied Structural Geology: Magnetic and Gravity Methods. It covers the structural geology, basics of rock magnetism and density and gravity and magnetic methods; the structural controls detectable by potential fields; the survey design and acquisition principles; the gravity anomaly types and corrections, data processing and gridding techniques; the forward modeling in gravity interpretation, inversion techniques for gravity data and structural mapping with gravity data; the magnetic anomalies and reduction techniques; and the filtering and enhancement techniques and magnetic forward modelling.

During this interactive course, participants will learn the magnetic inversion and depth estimation, structural mapping using magnetics and integration of gravity and magnetic data; the structural lineament mapping and structural geology workflows with potential field data; the correlation with seismic and well data, tectonic setting reconstruction and advanced software tools and platforms; the hydrocarbon exploration, mineral exploration, geothermal and groundwater applications and carbon capture & storage structure suitability; the 3D structural modeling from geophysical data, uncertainty and risk in structural interpretation and project-based geophysical interpretation; linking structure to stratigraphy; and the basin fill and deformation timing, control on migration and trap formation and inputs to petroleum systems modelling.

DE1072 - Page 1 of 14

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on applied structural geology using magnetic and gravity methods
- Discuss structural geology, basics of rock magnetism and density and gravity and magnetic methods
- Identify structural controls detectable by potential fields and explain survey design and acquisition principles
- Recognize gravity anomaly types and corrections and apply data processing and gridding techniques
- Illustrate forward modeling in gravity interpretation, inversion techniques for gravity data and structural mapping with gravity data
- Carryout magnetic anomalies and reduction techniques, filtering and enhancement techniques and magnetic forward modeling
- Apply magnetic inversion and depth estimation, structural mapping using magnetics and integration of gravity and magnetic data
- Describe structural lineament mapping and structural geology workflows with potential field data
- Explain correlation with seismic and well data, tectonic setting reconstruction and advanced software tools and platforms
- Discuss hydrocarbon exploration, mineral exploration, geothermal and groundwater applications and carbon capture & storage structure suitability
- Illustrate 3D structural modeling from geophysical data, uncertainty and risk in structural interpretation and project-based geophysical interpretation
- Link structure to stratigraphy and apply basin fill and deformation timing, control on migration and trap formation and inputs to petroleum systems modelling

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of applied structural geology: magnetic and gravity methods for geologists and structural geologists, geophysicists, exploration geoscientists, graduate students and early career researchers, geotechnical and engineering geologists.

DE1072 - Page 2 of 14

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

DE1072 - Page 3 of 14

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Stan Constantino, MSc, BSc, is a Senior Petroleum & Reservoir Engineer with over 30 years of Offshore & Onshore extensive experience within the Oil, Gas & Petroleum industries. His area of expertise include Reserves & Resources, Reserves Estimation & Uncertainty, Reservoir Characterization, Unconventional Resource & Reserves Evaluation, Oil & Gas Reserves Estimation, Methods for Aggregation of Reserves & Resources, Fractured Reservoir Classification & Evaluation, Sequence Stratigraphy, Petrophysics & Rock Properties, Seismic Technology, Geological Modelling, Water Saturation, Crude Oil & Natural Gas Demand, Exploration Agreements & Financial

Modelling, Seismic Survey Evaluation, Exploration Well Identification, Field Production Operation, Field Development Evaluation, Crude Oil Marketing, Core & Log Data Integration, Core Logging, & Integration. Well Logs & Core Advanced Advanced Core Log Analysis, Petrophysics/Interpretation of Cased Hole Logs, Cased Hole Formation Evaluation, Cased Hole Formation Evaluation, Cased Hole Evaluation, Cased-Hole Logging, Applied Production Logging & Cased Hole & Production Log Evaluation, Cased Hole Logging & Formation Evaluation, Open & Cased Hole Logging, Screening of Oil Reservoirs for Enhanced Oil Recovery, Enhanced Oil Recovery, Enhanced Oil Recovery Techniques, Petroleum Economic Analysis, Oil Industry Orientation, Oil Production & Refining, Crude Oil Market, Global Oil Supply & Demand, Global Oil Reserves, Crude Oil Types & Specifications, Oil Processing, Oil Transportation-Methods, Oil & Gas Exploration and Methods, Oil & Gas Extraction, Technology Usage in Industrial Security; Upstream, Midstream & Downstream Operations; Oil Reservoir Evaluation & Estimation, Oil Supply & Demand, Oil Contracts, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (revenue and profitability), Water Flooding, Reservoir Souring & Water Breakthrough, Reservoir Performance Using Classical Methods, Fractured Reservoir Evaluation & Management, Reservoir Surveillance & Management, Reservoir Engineering & Simulation, Reservoir Monitoring, Pressure Transient Testing & Reservoir Performance Evaluation, Reservoir Characterization, Reservoir Engineering Applications with ESP and Heavy Oil, Reservoir Volumetrics, Water Drive Reservoir, Reserve Evaluation, Rock & Fluid Properties, Fluid Flow Mechanics, PVT Analysis, Material Balance, Darcy's Law & Applications, Radial Flow, Gas Well Testing, Natural Water Influx, EOR Methods, Directional Drilling, Drilling Production & Operations, Field Development & Production of Oil & Gas, Wireline Logging, Mud Logging, Cased Hole Logging, Production Logging, Slick Line, Coil Tubing, Exploration Wells Evaluation, Horizontal Wells, Well Surveillance, Well Testing, Design & Analysis, Well Testing & Oil Well Performance, Well Log Interpretation (WLI), Formation Evaluation, Well Workover Supervision, Pressure Transient Analysis and Petrophysical Log Analysis. Currently, he is the CEO & Managing Director of Geo Resources Technology wherein he is responsible in managing the services and providing technical supports to underground energy related projects concerning field development, production, drilling, reservoir engineering and simulation.

Throughout his long career life, Mr. Stan has worked for many international companies such as the Kavala Oil, North Aegean Petroleum Company and Texaco Inc., as the Managing Director, Operations Manager, Technical Trainer, Training Consultant, Petroleum Engineering & Exploration Department Head, Assistant Chief Petroleum Engineer, Reservoir Engineer, Resident Petroleum Engineer, Senior Petroleum Engineer and Petroleum Engineer wherein he has been managing the evaluation of exploration wells, reservoir simulation, development training, production monitoring, wireline logging and well testing including selection and field application of well completion methods.

Mr. Stan has a Master's degree in Petroleum Engineering and a Bachelor's degree in Geology from the New Mexico Institute of Mining & Technology (USA) and from the Aristotelian University (Greece) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership of Management (ILM) and a member of the Society of Petroleum Engineers, USA (SPE), Society of Well Log Professional Analysts, USA (SPWLA) and European Association of Petroleum Geoscientists & Engineers (EAGE). Moreover, Mr. Stan published numerous scientific and technical papers and delivered various trainings, courses and workshops worldwide.

DE1072 - Page 4 of 14

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,000 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

|--|

<u>- aj 1</u>	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Structural Geology</i> <i>Role in Resource Exploration and Development</i> • <i>Tectonic Settings and</i> <i>Structural Provinces</i> • <i>Common Structural Features (Faults, Folds, Joints)</i> • <i>Structural Geology's Integration with Geophysics</i>
0930 - 0945	Break
0945 – 1030	Basics of Rock Magnetism & Density Magnetic Susceptibility vs Remanent Magnetization • Density Contrasts in Subsurface Geology • Magnetic Minerals and Their Formation • Factors Affecting Magnetic and Gravity Signatures
1030 – 1130	 Basics of Gravity Methods Principles of Gravity Surveying • Gravity Anomalies and Bouguer Correction Types of Gravity Surveys (Airborne, Land, Marine) • Resolution and Limitations
1130 - 1215	Magnetic Methods Principles of Magnetic Surveying • Magnetic Anomalies: Total Field, Residual, Reduction to Pole • Diurnal Correction and IGRF • Survey Configurations (Airborne, Ground, Satellite)
1215 - 1230	Break

DE1072 - Page 5 of 14

1230 - 1330	Structural Controls Detectable by Potential Fields Identifying Faults and Fold Systems • Mapping Intrusive and Basement Structures • Role in Sedimentary Basin Analysis • Applications in Crustal- Scale Tectonics
1330 - 1420	<i>Survey Design & Acquisition Principles</i> <i>Survey Objectives and Planning</i> • <i>Line Spacing, Altitude, and Orientation</i> • <i>Data Acquisition Parameters</i> • <i>Environmental and Logistical Considerations</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

Day Z	
	Gravity Anomaly Types & Corrections
0730 - 0830	Free-Air, Bouguer, and Terrain Corrections • Regional vs Residual Anomalies
	Tidal and Drift Corrections Correction Workflows
	Data Processing & Gridding Techniques
0830 - 0930	Data Leveling and Tie Line Adjustments • Interpolation and Filtering •
0050 - 0550	Upward and Downward Continuation • Gridding Best Practices (Kriging,
	Minimum Curvature)
0930 - 0945	Break
	Forward Modeling in Gravity Interpretation
0945 – 1100	Constructing Simple Subsurface Models • Estimating Depth and Density
0943 - 1100	Contrast • Modeling Faulted and Folded Layers • Software Tools for Forward
	Modeling
	Inversion Techniques for Gravity Data
1100 – 1215	Concepts of Model Inversion • Constraints and Regularization • 2D and 3D
	Inversion Outputs • Interpreting Inversion Results Geologically
1215 – 1230	Break
	Structural Mapping with Gravity Data
1230 - 1330	Basin Edge and Fault Zone Detection • Mapping Salt Domes and Basement
	Structures • High vs Low-Density Zones • Integrating with Seismic and Wells
	Case Studies in Gravity Interpretation
1330 - 1420	Rift Basin Architecture • Basement Topography Mapping • Volcanic Terrain
	Investigations • Gravity Data in Tectonic Reconstructions
	Recap
1420 1420	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

/ .	
	Magnetic Anomalies & Reduction Techniques
0730 - 0830	Total Field and Residual Anomalies • Reduction to the Pole (RTP) and Equator
	(RTE) • Analytic Signal and Tilt Derivatives • Depth Estimation Techniques
	Filtering & Enhancement Techniques
0020 0020	First and Second Vertical Derivatives • Horizontal Gradient and Tilt Angle
0830 – 0930	Filters • Matched Filters and Wavelet Analysis • Highlighting Structural
	Trends

DE1072 - Page 6 of 14

0930 - 0945	Break
0945 - 1100	Magnetic Forward ModelingBuilding Layered and Block ModelsModeling Remanent vs InducedMagnetizationSynthetic Anomaly GenerationValidation AgainstObserved DataObserved Data
1100 – 1215	Magnetic Inversion & Depth EstimationEuler Deconvolution • Source Parameter Imaging (SPI) • Depth-to-BasementMethods • Model Constraints and Geology
1215 - 1230	Break
1230 - 1330	Structural Mapping Using Magnetics Fault Delineation from Magnetic Trends • Intrusion Mapping (Dykes, Sills, Plutons) • Basement Depth and Tectonic Boundaries • Lineament Interpretation
1330 – 1420	Case Studies in Magnetic Applications Craton Margin Mapping • Fault System Characterization in Sedimentary Basins • Archean Greenstone Belts • Magnetic Data in Petroleum System Evaluation
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

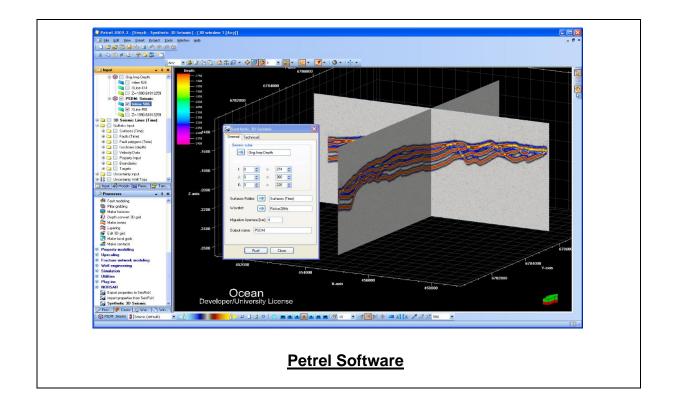
Day 4	
	Integration of Gravity & Magnetic Data
0730 – 0830	Benefits of Combined Interpretation • Joint Inversion Techniques •
	Complementary Anomaly Analysis • Cross-Validation with Structural Models
	Structural Lineament Mapping
0830 - 0930	Remote Sensing and Geophysical Fusion • Directional Filtering for Trend
	Analysis • Regional Stress Field Inferences • Statistical Lineament Analysis
0930 - 0945	Break
	Structural Geology Workflows with Potential Field Data
0945 - 1100	Data Conditioning and Enhancement • Horizon Flattening and Depth Slicing
	Defining Structural Domains Workflow for Integrated Basin Analysis
	Correlation with Seismic & Well Data
1100 – 1215	Tying Anomalies to Structural Events • Basement and Top Structure
1100 - 1213	Correlation • Linking Faults from Seismic and Magnetics • Improving
	Structural Cross-Sections
1215 – 1230	Break
	Tectonic Setting Reconstruction
1230 – 1330	Large-Scale Gravity and Magnetic Interpretation • Orogenic Belts and
1230 - 1330	Subduction Zones • Rift and Passive Margin Structure • Paleotectonic
	Mapping

DE1072 - Page 7 of 14

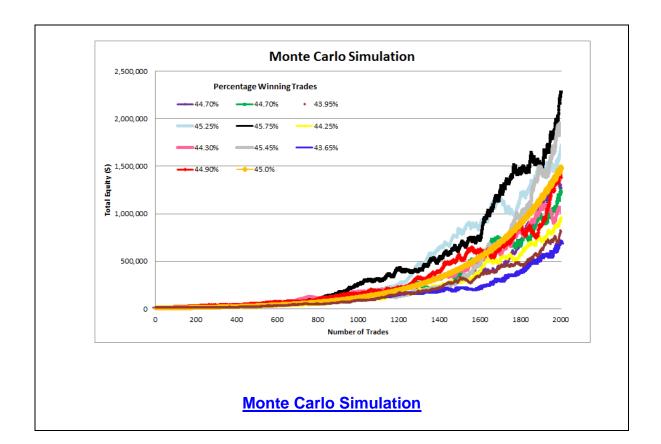
1330 - 1420	<i>Advanced Software Tools & Platforms</i> Geosoft Oasis Montaj Workflows • Petrel and Kingdom Integration • QGIS and ArcGIS Plugin Utilities • Machine Learning in Potential Field Interpretation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

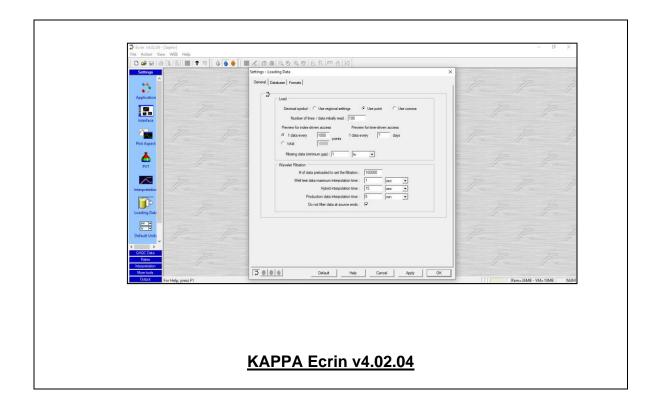
Dav 5

Day 5	
0730 - 0830	Resource Exploration Applications Hydrocarbon Exploration (Structural Traps) • Mineral Exploration (Magnetic Ore Bodies) • Geothermal and Groundwater Applications • CCS (Carbon Capture & Storage) Structure Suitability
0830 - 0930	3D Structural Modeling from Geophysical Data Converting Potential Fields to Surfaces • 3D Fault and Horizon Modeling • Geological Cross-Sections from Profiles • Merging Data into Structural Models
0930 - 0945	Break
0945 - 1100	<i>Uncertainty & Risk in Structural Interpretation</i> Sources of Geophysical Ambiguity • Managing Multiple Working Hypotheses • Sensitivity to Model Parameters • Communicating Uncertainty in Reports
1100 – 1215	Project-Based Geophysical Interpretation Group Interpretation of Real Datasets • Defining Structural Frameworks • Mapping Faults, Domes, and Basement • Presentation of Results
1215 - 1230	Break
1230 - 1345	Structural Framework for Basin Modeling Linking Structure to Stratigraphy • Basin Fill and Deformation Timing • Control on Migration and Trap Formation • Inputs to Petroleum Systems Modeling
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about a Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course


DE1072 - Page 8 of 14

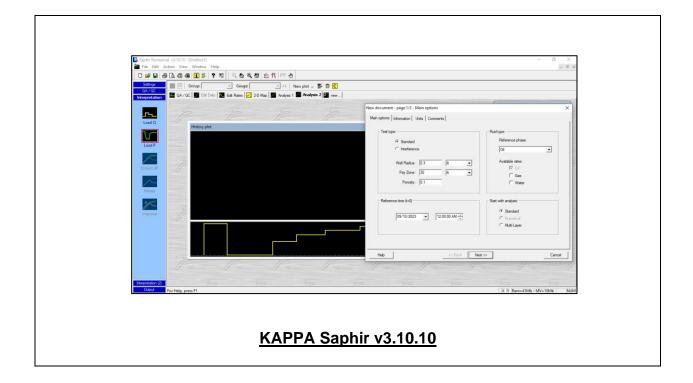
Simulator (Hands-on Practical Sessions)

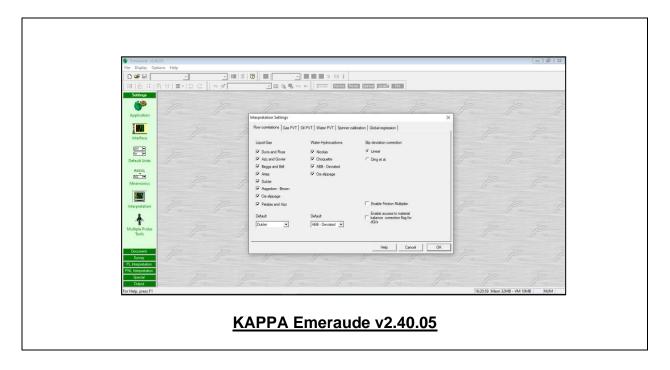

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Petrel Software", "COMPASS", "Monte Carlo", "KAPPA", "Interactive Petrophysics (IP)", "ECRIN", "PIPESIM", "Eclipse Software" and "PROSPER" software's.



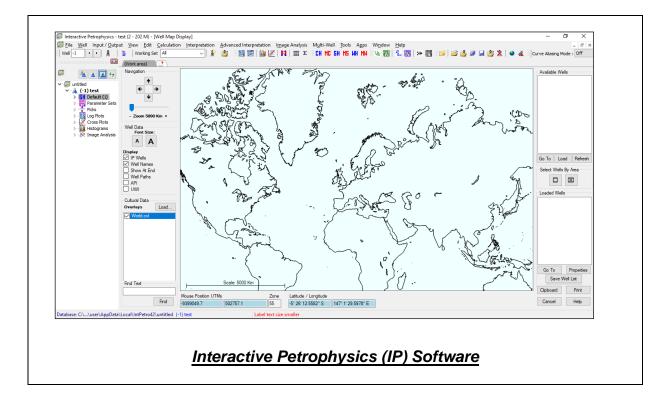
Rect:
Windborne # I. Design # I (Model and Balance # I) Windborne # I. Project # Start # Undef and # Interview # Undef and # Interview # Interview # Undef and # Interview # Interview # Undef and # Interview # Undef and # Interview # Interview # Undef and # Interview# Undef and # Interview# Undef andef and # Inte
* 1 (Brinding, press F1) (Brinding, press F
Eer Holg, press F1 Common Well Name Unit System: All Angles * Depthe It Map m COMPASS

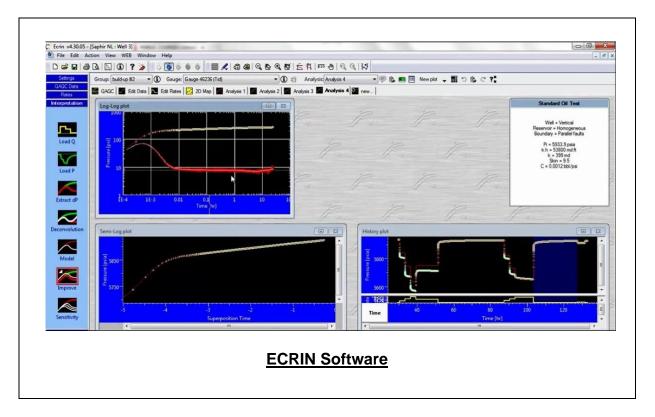
•)HS



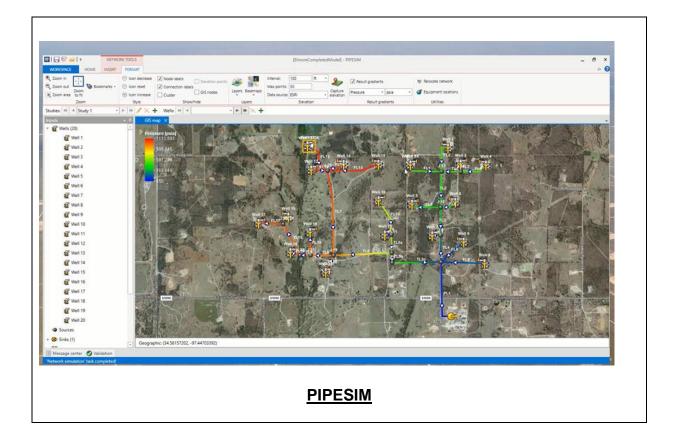


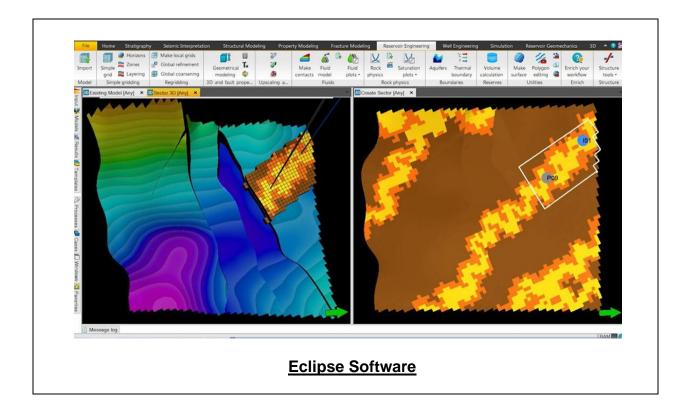
DE1072 - Page 10 of 14



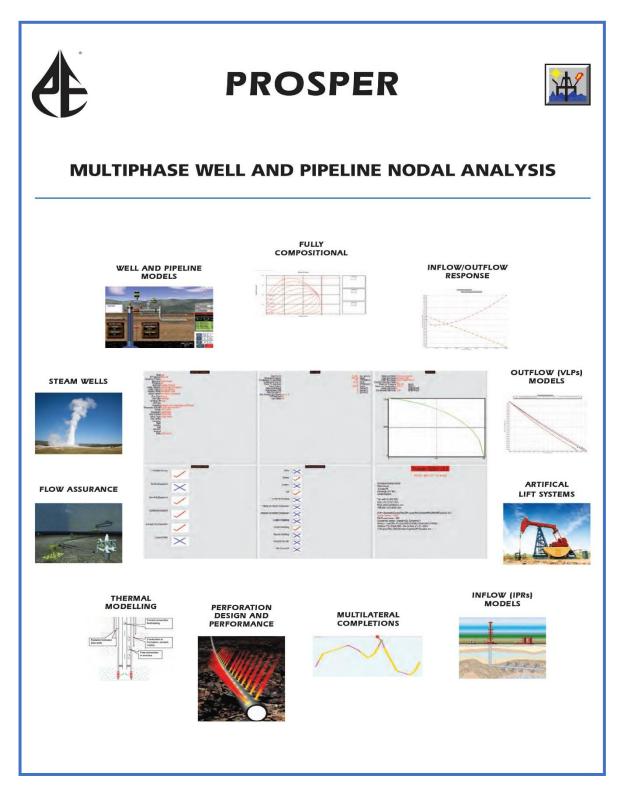


DE1072 - Page 11 of 14

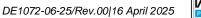




DE1072 - Page 12 of 14



DE1072 - Page 13 of 14



Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE1072 - Page 14 of 14

