

### COURSE OVERVIEW PE0902 Refinery Process Yields Optimization

CEUS

(30 PDHs)

AWARD

<u>Course Title</u> Refinery Process Yields Optimization

### Course Date/Venue

February 23-27, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

### **Course Description**







This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

ICLUDED

This course is designed to provide participants with a detailed and up-to-date overview of refinery process yields and optimization. It covers the crude oil origin, crude oil dehydration, desalting and stabilization; the petroleum refinery processes; the coking and thermal process that include delayed coking, operating variables, process yields, coke characteristics, gas composition, sulfur and nitrogen distribution and visbreaking process; the motor fuel production processes; and the UOP fluid catalytic cracking unit, reactor and generator system, catalyst, feedstock, process chemistry and fractionator system.

During this interactive course, participants will learn for naphtha/gasoline the UOP hydrotreating production; UOP hydrocracking/isocracking the process for gasoline conversion; the catalytic reforming process, fixed bed factor, process reactions, dehydrogenation and isomerization; the alkylation process; the isomerization as well as supporting operations for blending; the gas processing lube oil blending feedstock and petrochemical feedstock; and the additives production from refinery feedstock covering alcohols, ethers, ether production reaction and ether production process.



PE0902 - Page 1 of 7





### Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on refinery process yields optimization
- Discuss crude oil origin, crude oil dehydration, desalting and stabilization
- Carryout petroleum refinery processes covering crude oil distillation, nitrogen and sulfur distribution, crude unit desalters, etc.
- Employ coking and thermal process that include delayed coking, operating variables, process yields, coke characteristics, gas composition, sulfur and nitrogen distribution and visbreaking process
- Illustrate motor fuel production processes and discuss UOP fluid catalytic cracking unit, reactor and generator system, catalyst, feedstock, process chemistry and fractionator system
- Apply UOP hydrotreating for naphtha/gasoline production and UOP hydrocracking/isocracking process for gasoline conversion
- Identify catalytic reforming process, fixed bed factor, process reactions, dehydrogenation, isomerization, etc.
- Recognize alkylation process including chemical reaction, hydrofluoric and sulfuric acid process, process yield and the octane number of product and alkylate properties
- Apply isomerization as well as supporting operations for blending for product specifications, batch blending, inline blending, index blending for gasoline, RVP process, vapor pressure index blending, etc.
- Discuss gas processing lube oil blending feedstock and petrochemical feedstock
- Identify additives production from refinery feedstock covering alcohols, ethers, ether production reaction and ether production process

## Exclusive Smart Training Kit - H-STK<sup>®</sup>



Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK<sup>®</sup>). The H-STK<sup>®</sup> consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

### Who Should Attend

This course provides an overview of all significant aspects and considerations of refinery process yields optimization for process engineers, technologists, operating and supervisory personnel engaged in the refining activities who have a minimum of experience and those who are required to understand and discuss issues to their processes. This course is also suitable for business, sales, technical and scientific personnel with limited or no broad refinery operating experience, along with technical sales personnel; those who are involved in selling equipment or supplies to the refining industry and those who are involved with economic evaluations of refinery operations.



PE0902 - Page 2 of 7





### Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

### Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

# The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

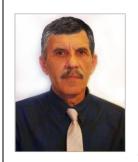
Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

## • BAC

## British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC




PE0902 - Page 3 of 7





### Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:



Mr. Mike Poulos, MSc, BSc, is a Senior Process Engineer with over 35 years of industrial experience within the Utilities, Refinery, Petrochemical and Oil & Gas industries. His expertise lies extensively in the areas of Process Plant Performance & Efficiency, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Process Equipment Design & Troubleshooting, Petroleum Processing, Process Design

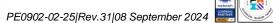
Specifications, Process Calculation Methods, Equipment Sizing & Selection, Piping, Pumps, Compressors, Heat Exchangers, Air Coolers, Direct-Fired Heaters, Fractionator Columns, Reactors, Ancillary Equipment, Process Vessels. Mechanical & Safety Aspects, Cost Estimation, Commissioning & Start-Up, Production & Cost Reduction, Reactor Building Ventilation System, PVC Initiators Storage Bunkers, PVC Modernization & Expansion, PVC Reactor, PVC Plant Reactors Pre-Heating, PVC Plant Start-Up & Commissioning, PVC Plant Shutdown, PVC Driers Automation, VCM Recovery, VCM Sphere Flooding System, VCM Storage Tanks, Steam Tripping Facilities, Solvents Plant Automation Commissioning & Start-Up and Inferential Properties System. Further, he is also well-versed in Advanced Process Control Technology, Designing Process Plant Fail-Safe Systems, Quantitative Risk Assessment, On-Line Statistical Process Control, Principles and Techniques of Contemporary Management, Rosemount RS3, Polymer Additives, Polymer Reaction Engineering, Polymer Rheology and Processing, GRID Management and Batch Process Engineering.

During his career life, Mr. Poulos held significant positions as the **Chemical Plants Technology Engineer**, **PVC Plant Production Engineer**, **PVC Plant Shutdown Coordinator**, **PVC Plant/CC Solvents Plants Acting Section Head** and **Chemical Distribution Section Head** from Hellenic Petroleum, wherein he was responsible for the development of integrated system.

Mr. Poulos has Master and Bachelor degrees in Chemical Engineering from the University of Massachusetts and Thessaloniki Polytechnic respectively. Further, he is a Certified Instructor/Trainer, a and a member of the Greek Society of Chemical Engineers and Greek Society of Engineers.

### Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-


30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.



PE0902 - Page 4 of 7







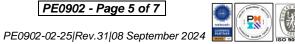
### **Course Fee**

US\$ 5,500 per Delegate + VAT. This rate includes H-STK<sup>®</sup> (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

### Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

### **Course Program**


The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

| Day 1:      | Sunday, 23 <sup>th</sup> February 2025                                                                                                                                                                                                 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0730 – 0800 | Registration & Coffee                                                                                                                                                                                                                  |
| 0800 - 0815 | Welcome & Introduction                                                                                                                                                                                                                 |
| 0815 - 0830 | PRE-TEST                                                                                                                                                                                                                               |
| 0830 - 0930 | Introduction, Crude Oil Origin, Crude Oil Dehydration, Desalting &<br>StabilizationCharacteristics of Crude Oil • Types of Crude Oil • API Gravity • Sulfur<br>Content • Salt Content • Pour Point • Carbon Residue • Nitrogen Content |
|             | • <i>Metal Content</i> • <i>Distillation Range</i> • <i>Characteristic Factor</i> (K) • <i>Product Specifications</i> • <i>Crude Assay</i>                                                                                             |
| 0930 - 0945 | Break                                                                                                                                                                                                                                  |
| 0945 – 1230 | Petroleum Refinery ProcessesOverall Refinery Flow • Crude Oil Distillation • Product Cut-points •Nitrogen & Sulfur Distribution                                                                                                        |
| 1230 - 1245 | Petroleum Refinery Processes (cont'd)Crude Unit Desalters • Wash Water Ratio • Hydrolysis of Crude Oil Salts,Vacuum Distillation • Refinery Complexity                                                                                 |
| 1245 – 1320 | Break                                                                                                                                                                                                                                  |
| 1320 - 1420 | Coking & Thermal ProcessesDelayed Coking • Process Description • Operating Variables • ProcessYields • Coke Characteristics • Gas Composition • Sulfur & NitrogenDistribution • Visbreaking Process                                    |
| 1420 - 1430 | <b>Recap</b><br>Using this Course Overview, the Instructor(s) will Brief Participants about<br>the Topics that were Discussed Today and Advise Them of the Topics to be<br>Discussed Tomorrow                                          |
| 1430        | Lunch & End of Day One                                                                                                                                                                                                                 |

| Day 2:      | Monday, 24 <sup>th</sup> February 2025                                   |
|-------------|--------------------------------------------------------------------------|
| 0730 – 0930 | Processes for Motor Fuel Production                                      |
|             | UOP Fluid Catalytic Cracking Unit (FCC) • Reactor System •               |
|             | Regenerator System • Riser Design for Optimum Reaction • Catalyst        |
|             | Composition • Catalyst/Oil Ratio • Catalyst Regeneration • Delta Coke on |
|             | Catalyst • Feedstock Quality • Catalyst Slide • Valves                   |
| 0930 - 0945 | Break                                                                    |
| 0945 - 1130 | Processes for Motor Fuel Production (cont'd)                             |
|             | Reactor/Regenerator Differential Pressure • Process Chemistry • Reaction |
|             | Termination • Process Description • Flue Gas System • Fractionator       |
|             | System • Wet Gas Concentration System • Products Mode of Operation •     |



PE0902 - Page 5 of 7







|             | Gasoline Mode • Kerosine Mode • Motor Diesel Mode • LPG Mode &<br>Petro FCC Mode                                                                                                                                         |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1130 - 1245 | UOPHydrotreatingforNaphtha/GasolineProductionHydrodesulfurisationHydrodenitrogenerationAromaticSaturation•Catalyst•FeedstockQuality•PFD•OperatingVariables•Hydrogen/Hydrocarbon Ratio•Recycle Das System••••••           |
| 245 - 1300  | Break                                                                                                                                                                                                                    |
| 1300 - 1420 | <b>UOP Hydrocracking/Isocracking Process for Gasoline Conversion</b><br>Feedstock Quality • Type of Catalyst • Conversion • Single Stage Reactor •<br>Two Stage Reactors • Isocracking for Naphtha (Gasoline) Production |
| 1420 - 1430 | Recap   Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow                                          |
| 1430        | Lunch & End of Day Two                                                                                                                                                                                                   |

| Day 3:      | Tuesday, 25 <sup>th</sup> February 2025                                       |
|-------------|-------------------------------------------------------------------------------|
| 0730 - 0930 | Catalytic Reforming Process                                                   |
|             | Fixed Bed Reactor • Process Reactions • Dehydrogenation • Isomerization •     |
|             | Cyclization • Dealkylation • Aromatization • Cracking • Reaction Rate         |
| 0930 - 0945 | Break                                                                         |
| 0945 - 1130 | Catalytic Reforming Process (cont'd)                                          |
|             | Catalyst • Catalyst Poisoning • Catalyst Selectivity • Activity • Stability • |
|             | Operating Variables • RON • Reformate Optimization                            |
|             | Alkylation Process                                                            |
| 1130 - 1245 | Chemical Reaction • Hydrofloric Acid Process • Sulfuric Acid Process •        |
| 1150 - 1245 | Operating Variables • Process Yield Octane Number of Product •                |
|             | Alkylate Properties                                                           |
| 1245 - 1300 | Break                                                                         |
| 1300 - 1420 | Isomerization                                                                 |
| 1420 - 1430 | Recap                                                                         |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about   |
|             | the Topics that were Discussed Today and Advise Them of the Topics to be      |
|             | Discussed Tomorrow                                                            |
| 1430        | Lunch & End of Day Three                                                      |

| Day 4:      | Wednesday, 26 <sup>th</sup> February 2025                                 |
|-------------|---------------------------------------------------------------------------|
| 0730 - 0930 | Supporting Operations                                                     |
|             | Blending for Product Specifications • Batch Blending • Inline Blending •  |
|             | Index Blending for Gasoline • RVP Process • Vapor Pressure Index          |
|             | Blending • Examples • Hydrogen Production • Steam-Methane Process         |
| 0930 - 0945 | Break                                                                     |
| 0945 – 1130 | Supporting Operations (cont'd)                                            |
|             | Primary Reaction • Operating Variable • Steam/Carbon Ratio • Catalyst     |
|             | Quality • Shift Converters • Methanator • CO <sup>2</sup> Removal • PFD • |
|             | Product Specification                                                     |
| 1130 - 1245 | Gas Processing                                                            |
|             | Inlet Separator • Contactor • Flash Drum • Filtration • Foaming in        |
|             | Contactor & in Regenerator • Acid Gas Removal                             |
| 1245 - 1300 | Break                                                                     |
| 1300 - 1400 | Gas Processing (cont'd)                                                   |
|             | Corrosion • Material • Regenerator Temperature • Solvent Specification •  |
|             | PE0902 - Page 6 of 7                                                      |



PE0902-02-25|Rev.31|08 September 2024

AWS



IAC



|             | Types of Amines                                                                                                                                                                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1420 – 1430 | <b>Recap</b><br>Using this Course Overview, the Instructor(s) will Brief Participants about<br>the Topics that were Discussed Today and Advise Them of the Topics to be<br>Discussed Tomorrow |
| 1430        | Lunch & End of Day Four                                                                                                                                                                       |

| Day 5:      | Thursday, 27 <sup>th</sup> February 2025                                    |
|-------------|-----------------------------------------------------------------------------|
| 0730 - 0830 | Lube Oil Blending Feedstock                                                 |
|             | Viscosity • Viscosity Change with Temperature • Pour Point • Flash Point    |
|             | • Boiling Temperature • Lube Oil Processing • Propane Deasphalting •        |
|             | PFD                                                                         |
| 0830 - 0930 | Petrochemical Feedstock                                                     |
|             | Aromatic Production • Solvent Extraction of Aromatics                       |
| 0930 - 0945 | Break                                                                       |
| 0945 – 1245 | Petrochemical Feedstock (cont'd)                                            |
|             | Aromatic Separation • PFD • Un-Saturate Production                          |
| 1245 - 1300 | Break                                                                       |
| 1300 - 1315 | Additives Production from Refinery Feedstock                                |
|             | Use of Alcohols & Ethers • Ether Production Reaction • Ether Production     |
|             | Process PFD                                                                 |
| 1315 - 1400 | Course Conclusion                                                           |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about |
|             | the Course Topics that were Covered During the Course                       |
| 1400 - 1415 | POST-TEST                                                                   |
| 1415 – 1430 | Presentation of Course Certificates                                         |
| 1430        | Lunch & End of Course                                                       |

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-



<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>



PE0902 - Page 7 of 7

