

COURSE OVERVIEW PE1058 Physical Testing for PVC Resin Product

Course Title

Physical Testing for PVC Resin Product

Course Date/Venue

June 15-19, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

Course Reference PE1058

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and advanced overview on. It covers the PVC resin, types of PVC, importance of physical testing in PVC includes the standards and testing guidelines, sample preparation for testing and laboratory safety and best practices; the visual and basic physical properties, tensile strength and elongation (ASTM D638 / ISO 527), flexural strength and modulus (ASTM D790), impact strength – notched Izod/Charpy (ASTM D256 / ISO 179) and hardness testing (ASTM D2240 – Shore D); the compression and tear testing and vicat softening point (ASTM D1525 / ISO 306); and the heat deflection temperature (HDT – ASTM D648).

During this interactive course, participants will learn the thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), melt flow index and fusion time and specific gravity and density (ASTM D792); the flammability and smoke density, water absorption and moisture content, chemical resistance testing and weathering and UV resistance; the field versus lab performance correlation and statistical quality control (SQC) and test method validation and repeatability; and the quality assurance documentation, audits and compliance and lab best practices and troubleshooting.

PE1058 - Page 1 of 9

PE1058-06-25|Rev.00|010 July 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge in physical testing for PVC resin product
- Discuss PVC resin, types of PVC, importance of physical testing in PVC includes the standards and testing guidelines, sample preparation for testing and laboratory safety and best practices
- Explain visual and basic physical properties, tensile strength and elongation (ASTM D638 / ISO 527), flexural strength and modulus (ASTM D790), impact strength – notched Izod/Charpy (ASTM D256 / ISO 179) and hardness testing (ASTM D2240 – Shore D)
- Perform compression and tear testing and discuss vicat softening point (ASTM D1525 / ISO 306) and heat deflection temperature (HDT ASTM D648)
- Determine thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), melt flow index and fusion time and specific gravity and density (ASTM D792)
- Identify flammability and smoke density, water absorption and moisture content, chemical resistance testing and weathering and UV resistance
- Differentiate field versus lab performance correlation and discuss statistical quality control (SQC) and test method validation and repeatability
- Perform quality assurance documentation, audits and compliance and lab best practices and troubleshooting

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of physical testing for PVC resin product for process engineers and production supervisors, compliance and regulatory affairs specialists, laboratory technicians and analysts and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE1058 - Page 2 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1058 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Pete Ludovice, PhD, BSc, is a **Senior Chemical Engineer** with over **25 years** of extensive experience in **PVC** Pipe Production, **PVC** Manufacturing, **Polymerization** Process Control & Optimization, **Plastics/Rubber Additives**, **Thermoplastics Processing**, **Plastic Materials**, **Polymer Science** and **Polyolefin** (**Polyethylene & Polypropylene**) Engineering. Further, he is also well-versed in **Chemical & Biomolecular Engineering**, **Bioengineering**, **Water**

Distribution System, Water Injection Treatment and Water Treatment Technology. He is currently the Senior Professor of Chemical & Biomolecular Engineering in Georgia Institute of Technology, USA wherein he has designed numerous courses on various aspects of polymer science and chemical engineering that include Applied Molecular Modelling, Numerical Modelling of Process Engineering, and Chemical Processes using Molecular Modelling to characterize Polymer Behaviour and Methods for Technical Innovation.

Dr. Ludovice's research interests include structure-property relationships in polymer materials including a variety of polymers from basic vinyl polymers to high performance polymer and biological polymers. His researches have been funded by various industries and the United States National Science Foundation, the Department of Energy, the Whitaker Foundation and the Office of Naval Research. Further, he has gained his extensive experience through his prior challenging positions such as the PVC Pipe Production Manager of Cresline Plastic Pipe Co., Polymer Product Manager of Molecular Simulations Inc., a Senior Scientist for NASA – Ames Research Center (USA) and the IBM – Almaden Research Center (USA), a Research Associate for the Institut für Polymere at the Eidgenössische Technische Hochschule in Zürich, Switzerland and a Principal Investigator for 40 diverse international agencies.

Dr. Ludovice holds PhD and Bachelor degrees in Chemical Engineering from the Massachusetts Institute of Technology, USA and the University of Illinois, USA respectively. Further, he is a Certified Instructor/Trainer and an active member of the American Institute of Chemical Engineers (AIChE), Society of Plastics Engineers (SPE), Materials Research Society and the American Chemical Society. Moreover, he has published numerous books and papers circulated internationally and delivered technical presentations and seminars in several international conferences. He was also one of the inventors of the "Self-Expanding Intraluminal Composite Prosthesis" and the "Pore-Forming Agents to Enhance Transdermal Delivery of Biological Agents". Amongst all these achievements, he was honoured with various awards such as the "Outstanding PhD Thesis Award" by Georgia Institute of Technology, the "Outstanding Professor of the Year" by AIChE and the "Sherwin Williams Award in Polymer Science" by the American Chemical Society.

PE1058 - Page 4 of 9

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to PVC Resin</i> <i>Types of PVC: Suspension, Emulsion, Bulk</i> • K-Value & Polymerization <i>Degree</i> • Additives & Compound Formulation • Applications of Rigid & <i>Flexible PVC</i>
0930 - 0945	Break
0945 – 1040	<i>Importance of Physical Testing in PVC</i> <i>Ensuring Compliance with Specifications</i> • <i>Supporting Product Development</i> • <i>Identifying Processing Defects</i> • <i>Customer Requirement Validation</i>
1040 - 1135	Standards & Testing Guidelines Overview of ASTM D1784, ISO 1163 • Sampling Methods for PVC Powder & Compound • Calibration & Traceability of Testing Instruments • Role of SOPs & QA Systems
1135 - 1230	Sample Preparation for Testing Powder Conditioning & Sieving • Compression Molding for Test Specimens • Cooling & Conditioning Protocols • Preventing Contamination & Deformation
1230 – 1245	Break
1245 - 1335	Laboratory Safety & Best Practices Handling PVC Powder & Additives Safely • Ventilation, PPE & Fume Management • Electrical & Mechanical Safety • Storage of Chemicals & Test Samples

PE1058 - Page 5 of 9

1335 - 1420	<i>Visual & Basic Physical Properties</i> Color & Appearance Grading • Bulk Density & Tapped Density • Particle Size Distribution (Sieve Analysis) • Apparent Density & Flowability
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One
Day 2	Tensile Strength & Elongation (ASTM D638/ISO 527) Fauinment & Test Setur • Specimen Geometry & Clamping • Test Speed

0730 – 0830	Equipment & Test Setup • Specimen Geometry & Clamping • Test Speed, Strain Rate & Gauge Length • Calculating Tensile Modulus & Break Elongation
0830 - 0900	<i>Flexural Strength & Modulus (ASTM D790)</i> <i>Three-Point versus Four-Point Bending • Support Span & Specimen</i> <i>Dimensions • Test Rate & Deflection Calculations • Interpreting Yield versus</i> <i>Break Failure</i>
0900 - 0915	Break
0915 – 1100	<i>Impact Strength – Notched Izod/Charpy (ASTM D256 / ISO 179)</i> <i>Test Principles & Specimen Notching • Conditioning & Temperature</i> <i>Sensitivity • Test Execution & Energy Calculation • Fracture Mode Analysis</i>
1100 – 1230	Hardness Testing (ASTM D2240 - Shore D) Durometer Type & Calibration • Test Points & Specimen Thickness • Repeatability & Standard Deviation • Differences in Rigid versus Flexible PVC
1230 - 1245	Break
1245 – 1335	<i>Compression & Tear Testing</i> <i>Compressive Strength Test Setup</i> • <i>Tear Resistance of Films & Sheets</i> • <i>Role</i> <i>in Pipe & Gasket Evaluation</i> • <i>Crack Propagation Observation</i>
1335 - 1420	<i>Case Study & Data Interpretation</i> <i>Example: Comparison of Two PVC Grades • Graph Plotting: Stress-Strain</i> <i>Curves • Tolerance Limits & QC Acceptance • Troubleshooting Abnormal</i> <i>Results</i>
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3

Day 5	
	Vicat Softening Point (ASTM D1525/ISO 306)
0730 – 0830	Principles & Equipment • Load Selection (B50, A120) • Heating Rate &
	Penetration Depth • Application Relevance in Pipe & Profile
	Heat Deflection Temperature (HDT – ASTM D648)
0830 – 0900	Deflection versus Load Testing Principle • Sample Preparation &
	Conditioning • Test Fixtures & Oil Bath Calibration • HDT versus Vicat:
	Differences & Selection
0900 - 0915	Break
	Thermogravimetric Analysis (TGA)
0915 – 1100	Decomposition Profile of PVC • Heating Rate & Mass Loss Curve •
	Identifying Filler & Plasticizer Content • PVC Degradation Behavior

PE1058 - Page 6 of 9

1100 – 1230	Differential Scanning Calorimetry (DSC) Tg (Glass Transition) & Melting Points • PVC Fusion & Crystallization Peaks • Use of DSC in Processing Window • Additive Effect on Thermal Profile
1230 - 1245	Break
1245 – 1335	<i>Melt Flow Index & Fusion Time</i> <i>MFI for Flexible PVC (ASTM D1238)</i> • <i>Fusion Behavior Using Torque</i> <i>Rheometer</i> • <i>Gelation Time & Plastograph Curves</i> • <i>Impact on Extrusion &</i> <i>Molding</i>
1335 - 1420	Practical Lab Session Conduct Vicat & HDT Tests • Set Up & Run TGA/DSC for a PVC Sample • Plotting Curves & Identifying Peak Shifts • Interpreting Effects of Formulation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0830	Specific Gravity & Density (ASTM D792) Floating & Immersion Methods • Importance in Formulation Adjustment • Differences in Filled versus Unfilled PVC • Standard Test Media & Temperatures
0830 - 0930	Flammability & Smoke Density UL 94 Vertical & Horizontal Burn Tests • LOI (Limited Oxygen Index – ASTM D2863) • Smoke Density Chamber Setup • Role of Flame Retardants & Fillers
0930 - 0945	Break
0945 – 1100	<i>Water Absorption & Moisture Content</i> ASTM D570 Immersion Test • Gravimetric Moisture Balance • Desiccation & Conditioning Effects • Impact on Electrical & Mechanical Performance
1100 - 1215	<i>Chemical Resistance Testing</i> Acid, Alkali, Solvent Resistance • Staining, Swelling, Discoloration Evaluation • Storage Tank & Pipe Compatibility • Long-Term Immersion Test Protocol
1215 - 1230	Break
1245 - 1335	<i>Weathering & UV Resistance</i> <i>QUV Accelerated Weathering</i> • <i>Yellowness Index & Gloss Retention</i> • <i>Surface Cracking, Chalking Observation</i> • <i>Stabilizer Evaluation</i>
1335 - 1420	Field versus Lab Performance Correlation Real-World Failures & Lab Test Replication • Field Sample Comparison with Standards • Adjusting Lab Methods for Product Conditions • Reliability Forecasting
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

PE1058 - Page 7 of 9

Day	5
-----	---

0730 – 0830	Statistical Quality Control (SQC)
	Use of Control Charts & Trend Analysis • Cp, Cpk & Process Capability for
	PVC • Sampling Plans (AQL, MIL-STD-105) • Detecting Out-of-Control
	Conditions
	Test Method Validation & Repeatability
0830 - 0930	Precision, Bias & Reproducibility • Gage R&R & Inter-Laboratory Studies •
	Root Causes of Variability • Cross-Checks with Alternative Methods
0930 - 0945	Break
	Quality Assurance Documentation
0045 1045	Test Report Structure & Traceability • Certificate of Analysis (CoA)
0945 – 1045	Generation • Lab Notebook versus Digital LIMS Records • Regulatory
	Requirements for Recordkeeping
	Audits & Compliance
1045 1015	ISO 17025 & Lab Accreditation • Internal versus External Audit Readiness •
1045 – 1215	Instrument Calibration & Traceability • Corrective & Preventive Action
	(CAPA)
1215 - 1230	Break
	Lab Best Practices & Troubleshooting
1230 - 1345	Equipment Cleaning & Maintenance • Error Logs & Procedural Adherence •
	Continuous Improvement in Testing • Staff Competency & Training
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE1058 - Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

PE1058 - Page 9 of 9

PE1058-06-25|Rev.00|010 July 2025