

COURSE OVERVIEW IT0035 Face Detection with OpenCV in Python

Course Title

Face Detection with OpenCV in Python

Course Date/Venue

Session 1: May 25-29, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE Session 2: September 22-26, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

(30 PDHs)

Course Reference

IT0035

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Face Detection with OpenCV in Python. It covers the face detection and the difference between detection and recognition; setting-up OpenCV in Python and image processing fundamentals in OpenCV; the OpenCV basics for face detection and video capture and processing in OpenCV; the Haar cascade, working with XML Haar cascade files and how OpenCV uses Haar features for face detection, strengths and limitations of Haar cascade; and accessing OpenCV's built-in Haar cascade XML files, detecting faces in a static image, drawing bounding boxes around detected faces and tuning detection parameters for better accuracy.

Further, the course will also discuss the real-time face detection using Haar cascades, detecting facial features using Haar cascade and performance optimization in Haar-based face detection; the limitations of Haar cascades in face detection and deep learning for face detection; installing and loading OpenCV's DNN face detector and real-time face detection with deep learning models; the facial landmarks and feature detection and comparing different face detection techniques; and the face tracking with OpenCV and AI-based face detection using deep learning models.

IT0035- Page 1 of 9

During this interactive course, participants will learn the face detection in low-resolution and noisy images, face detection with mask and occlusions and AI-based real-time face detection optimization; using face detection for real-time security monitoring and AI-based intruder detection with face recognition; the facial feature extraction for biometric security and face detection models in smart CCTV systems; the face detection in attendance and access control systems and cloud and mobile applications; and the ethical and privacy concerns in face detection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a fundamental knowledge on face detection with OpenCV in Python
- Discuss face detection and the difference between detection and recognition
- Set-up OpenCV in Python and image processing fundamentals in OpenCV
- Apply OpenCV basics for face detection and video capture and processing in OpenCV
- Define Haar Cascade, work with XML Haar Cascade files and identify how OpenCV uses Haar features for face detection including its strengths and limitations
- Access OpenCV's built-in Haar cascade XML files, detect faces in a static image, draw bounding boxes around detected faces and tune detection parameters for better accuracy
- Apply real-time face detection using Haar Cascades, detecting facial features using Haar cascade and performance optimization in Haar-based face detection
- Recognize the limitations of Haar Cascades in face detection and use deep learning for face detection
- Install and load OpenCV's DNN face detector and apply real-time face detection with deep learning models
- Apply facial landmarks and feature detection and compare different face detection techniques
- Implement face tracking with OpenCV and AI-based face detection using deep learning models
- Carryout face detection in low-resolution and noisy images, face detection with mask and occlusions and AI-based real-time face detection optimization
- Use face detection for real-time security monitoring and AI-based intruder detection with face recognition
- Apply facial feature extraction for biometric security and deploy face detection models in smart CCTV systems
- Employ face detection in attendance and access control systems, deploying face detection in cloud and mobile applications and ethical and privacy concerns in face detection

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

IT0035- Page 2 of 9 IT0035-05-25/Rev.00/17 March 2025

Who Should Attend

This course provides an overview of all significant aspects and considerations of face detection with OpenCV in Python for beginners in computer vision, python enthusiasts, AI and machine learning enthusiasts, software developers, engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>ACCREDITED</u>
<u>The International Accreditors for Continuing Education and Training</u>
(IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IT0035- Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Abdel Aziz lssa, MSc, BSc. is Senior а Instrumentation & Communications Engineer with extensive years of experience in the Water & Electricity and Utilities. He specializes in Python, Python for Cybersecurity, Python with TensorFlow for Deep Learning, Python for Data Science and Machine Learning, CompTIA, Network+, Network Configuration & Management, Network Monitoring, Network Design & Implementation, Systems & Networks Protection,

Network Fundamentals & Troubleshooting, Advanced Networking Technology, **Operating System** Installation & Upgrading, **IP** Installation & Networking, **Ethical** Hacking (CEH V.10), Access Control Management, Software, Hardware, Modeling, Simulation & Design, WiMax Broadband Wireless, SDH Networks, IPT Avaya Network, WAN & Satellite Communication, Wireless Technology RC-400, Detection System Using Machine Learning, Certified Computer Forensics, Certified Secure Computer User (CSCU), Computer-Based Office Administration & Organization, ICDL, MS Office & Excel, Security Protocols & Best Practices, Security Awareness & Training, Security Audits, Security Procedures Development, Risk Management, Resource Policies & Management, Leadership & Management, Vendor Management, Operations Finance Management, Communication Skills, Management, Strategic Thinking, Continuous Learning & Development and Team Building.

During his career life, Mr. Abdel has gained his practical and field experience through his various significant positions and dedication as the **Network & System Administrator**, **Information Security Specialist**, **Network Engineer**, **Computer Networks & Cybersecurity Technical Practitioner**, **Sales & Computer Technician**, **Lecturer**, **Practitioner** and **Instructor/Trainer** for Saudi Arabia Culture Mission, Applied Science University and Microtech for Computers, just to name a few.

Mr. Abdel has a Master's degree in Computer Science, a Bachelor's degree in Information Technology & Computing and a Diploma in Computer Technology. Further, he is a Certified Ethical Hacker, a Microsoft System Center IT Professional (MCITP), a Microsoft System Center Configuration Manager (SCCM) and has numerous academic certifications on Hardware & Software Maintenance, CCNA (Cisco Certified Network Associate), Cisco Wireless LANs, Oracle 10g, Mac Certificate from Modern Systems Co. (OSX, Technical and Server), FortiAnalyzer, FortiGate UTM, Data Center Design Professional (DCDP) and has further delivered numerous trainings, courses, workshops, seminars and conferences globally.

IT0035- Page 4 of 9

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day	1
-----	---

0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Face Detection & Computer Vision
0820 0020	What Is Face Detection? Difference Between Detection & Recognition •
0850 - 0950	Applications of Face Detection in Real-vooria Scenarios • Traditional versus
	AI-Based Face Detection Techniques • Operotew of OpenCV & Its Role in
0930 - 0945	Break
	Setting Up OpenCV in Python
0045 1030	Installing OpenCV & Required Dependencies • Understanding OpenCV's
0945 - 1030	Basic Functions for Image Processing • Loading & Displaying Images with
	<i>OpenCV</i> • <i>Converting Images to Grayscale for Face Detection</i>
1030 - 1130	Image Processing Fundamentals in OpenCV
	Reading & Writing Images Using OpenCV • Resizing, Cropping & Rotating
	Images • Applying Filters & Edge Detection • Understanding Image
	Thresholding
1130 - 1230	OpenCV Basics for Face Detection
	Understanding OpenCV's Cascade Classifier • How Haar Cascades Work for
	Face Detection • Loading Pre-Trained Haar Cascade Models • Detecting
	Objects Using Haar Cascade Classifier
1230 - 1245	Break

IT0035- Page 5 of 9 IT0035-05-25|Rev.00|17 March 2025

1245 – 1330	<i>Video Capture & Processing in OpenCV</i> Accessing a Webcam Using OpenCV • Capturing & Displaying Frames from a Video Stream • Saving Processed Videos with OpenCV • Real-Time Image Manipulation on Video Streams
1330 - 1420	Hands-On: Basic Image & Video Processing with OpenCV Writing a Python Script to Capture Video • Converting Video Frames to Grayscale • Applying Edge Detection to Video Streams • Saving Processed Frames as Images
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

/ _	
0730 – 0830	Understanding Haar Cascade Classifier What Is a Haar Cascade? • Working with XML Haar Cascade Files • How OpenCV Uses Haar Features for Face Detection • Strengths & Limitations of Haar Cascade
	Loading Pre-Trained Haar Cascades for Face Detection
0830 - 0930	Accessing OpenCV's Built-In Haar Cascade XML Files • Detecting Faces in a Static Image • Drawing Bounding Boxes Around Detected Faces • Tuning Detection Parameters for Better Accuracy
0930 - 0945	Break
	Real-Time Face Detection Using Haar Cascades
0945 - 1100	Using Haar Cascade for Real-Time Face Detection in Video • Enhancing Detection with Different Image Preprocessing Techniques • Multi-Scale Detection & Performance Optimization • Handling False Positives & False Negatives
	Detecting Facial Features Using Haar Cascades
1100 – 1230	Detecting Eyes, Nose, & Mouth • Overlaying Filters on Facial Features • Improving Detection Speed & Accuracy • Case Study: Face Tracking with Haar Cascades
1230 - 1245	Break
1245 - 1330	Performance Optimization in Haar-Based Face DetectionUnderstanding Processing Time & Frame Rate • Multi-Threading for EfficientFace Detection • Reducing False Positives Using Image Processing Techniques• Comparing Haar Cascade versus Deep Learning-Based Face Detection
1330 - 1420	Hands-On: Implementing Haar Cascade for Face Detection
	Writing a Python Script to Detect Faces in Images • Real-Time Face Detection in Webcam Streams • Applying Haar Cascades to Video Files • Experimenting with Different Pre-Trained Haar Cascade Models
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

IT0035- Page 6 of 9 IT0035-05-25|Rev.00|17 March 2025

Day 3	
0730 - 0830	Deep Learning-Based Face Detection
	Limitations of Haar Cascades in Face Detection • Why Use Deep Learning for
	<i>Face Detection?</i> • <i>Overview of OpenCV's DNN Module</i> • <i>Understanding SSD</i>
	(Single Shot Multibox Detector)
	Installing & Loading OpenCV's DNN Face Detector
0830 - 0930	Downloading Pre-Trained DNN Face Detection Models • Loading Models in
0000 0000	OpenCV Using DNN Module • Comparing Caffe & Tensorflow Face Detection
	Models • Detecting Faces in Images with DNN Model
0930 - 0945	Break
	Real-Time Face Detection with Deep Learning Models
0945 - 1100	Using OpenCV's DNN Module for Face Detection in Video • Optimizing
0010 1100	Detection Speed with CUDA (GPU Acceleration) • Handling Multiple Faces
	in a Single Frame • Benchmarking DNN versus Haar Cascade Performance
	Facial Landmarks & Feature Detection
1100 - 1230	Introduction to Facial Landmark Detection • Using Dlib's Pre-Trained Models
	for Landmark Detection • Aligning & Normalizing Faces for Better Detection •
	Applications of Facial Landmark Detection
1230 - 1245	Break
	Comparing Different Face Detection Techniques
1245 - 1330	Haar Cascade versus DNN Face Detector • YOLO & Faster R-CNN for Face
	Detection • Accuracy, Speed, & Computational Performance Trade-Offs •
	When to Use Which Face Detection Method?
	Hands-On: Implementing DNN-Based Face Detection
1330 - 1420	Running a Pre-Trained DNN Face Detector on Images • Real-Time Face
	Detection with OpenCV's DNN Module • Comparing Detection Accuracy
	Between Haar & DNN • Experimenting with Different Confidence Thresholds
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
1.000	were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Duyi	
0730 - 0830	Implementing Face Tracking with OpenCV
	Face Detection versus Face Tracking • Introduction to OpenCV's Multi-Object
	Tracking • Using MOSSE & KCF Trackers for Face Tracking • Real-Time
	Face Tracking in Video Streams
0830 - 0930	AI-Based Face Detection Using Deep Learning Models
	Using Pre-Trained Deep Learning Models for Face Detection • Exploring
	OpenCV with MobileNet SSD for Face Detection • Using FaceNet for Face
	Verification • Face Detection in Low-Light & Occlusion Scenarios
0930 - 0945	Break
0945 - 1100	Face Detection in Low-Resolution & Noisy Images
	Challenges in Face Detection with Low-Quality Images • Enhancing Image
	Quality Using AI-Based Super-Resolution • Noise Reduction Techniques for
	Better Detection Accuracy • Case Study: Improving Face Detection in
	Surveillance Footage
1100 - 1230	Face Detection with Mask & Occlusions
	Handling Face Detection with Partial Occlusion • Detecting Faces with
	Sunglasses, Masks, & Hats • Improving Face Detection with Augmented
	Training Data • AI-Powered Occlusion Handling Techniques

IT0035- Page 7 of 9

1230 – 1245	Break
1245 - 1330	AI-Based Real-Time Face Detection Optimization
	Reducing Computational Overhead in Face Detection • Optimizing Detection
	Speed with Hardware Acceleration (CUDA, TensorRT) • Deploying Face
	Detection Models on Edge Devices (Raspberry Pi, Jetson Nano) • Case Study:
	Face Detection for IoT-Based Smart Security Systems
1330 - 1420	Hands-On: Implementing Face Tracking & Advanced Face Detection
	Face Tracking with OpenCV & Dlib • Implementing AI-Based Face Detection
	on Edge Devices • Running AI Face Detection Models on a Mobile Phone •
	Experimenting with OpenCV's Face Detection in Low-Light Conditions
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0830	Face Detection for Security & Surveillance Systems
	Using Face Detection for Real-Time Security Monitoring • AI-Based Intruder
	Detection with Face Recognition • Facial Feature Extraction for Biometric
	Security • Deploying Face Detection Models in Smart CCTV Systems
	Face Detection in Attendance & Access Control Systems
0020 0020	AI-Based Employee Attendance Systems • Face Detection for Contactless
0850 - 0950	<i>Entry Systems</i> • <i>Integrating Face Detection with RFID & IoT</i> • <i>Case Study:</i>
	AI in Automated Attendance Management
0930 - 0945	Break
	Deploying Face Detection in Cloud & Mobile Applications
0045 1100	Deploying Face Detection Models Using Flask API • Integrating Face
0945 - 1100	Detection with Android & Ios Apps • Cloud-Based Face Detection with Google
	Vision API • Using AWS & Azure for Face Detection Applications
	Ethical & Privacy Concerns in Face Detection
1100 1220	Ethical Issues in AI-Based Face Detection • Privacy Laws & Regulations
1100 - 1230	(GDPR, CCPA) • Preventing AI Bias in Face Detection Systems • Best
	Practices for Responsible AI Development
1230 – 1245	Break
	Final Hands-On Project & Deployment
1245 - 1345	Building a Face Detection Attendance System • Deploying a Face Detection
	Web Application • Integrating Face Detection into Smart Home Systems •
	Course Wrap-Up & Future Learning Paths
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

IT0035- Page 8 of 9

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

IT0035- Page 9 of 9

