

COURSE OVERVIEW LE1010 Laboratory Analyses for Oil & Gas Production

O CEUS (30 PDHS)

AWA

Course Title

Laboratory Analyses for Oil & Gas Production

Course Date/Venue

September 15-19, 2025/Ajman or Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-ofthe-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Laboratory Analyses for Oil & Gas Production. It covers the sample collection and handling; the basic analytical equipment for oil & gas labs; the analytical techniques, hydrocarbon analysis, water quality testing in oil & gas and acidity and alkalinity testing; the sulfur content analysis, elemental analysis, gas chromatography for volatile compounds and viscosity and density measurement; the corrosion and scale analysis, advanced chromatography techniques and mass spectrometry for oil & gas; and the fourier transform infrared (FTIR) spectroscopy, rheological properties of fluids, bioanalytical methods in oil & gas and environmental and safety considerations in laboratory analysis.

During this interactive course, participants will learn the laboratory role in drilling operations, production chemistry and scaling control; the reservoir fluids and well testing, well stimulation and laboratory support; the production water treatment laboratory, quality assurance and control in production laboratories; the data interpretation and analysis, troubleshooting reporting laboratorv equipment and and documentation standards; troubleshooting common production issues; the laboratory auditing and compliance; and the future trends and innovations in laboratory analysis.

LE1010 - Page 1 of 8 LE1010-09-25|Rev.01|04 June 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on laboratory analyses for oil & gas production
- Carryout sample collection and handling and discuss the basic analytical equipment for oil & gas labs
- Employ analytical techniques, hydrocarbon analysis, water quality testing in oil & gas and acidity and alkalinity testing
- Apply sulfur content analysis, elemental analysis, gas chromatography for volatile compounds and viscosity and density measurement
- Illustrate corrosion and scale analysis, advanced chromatography techniques and mass spectrometry for oil & gas
- Discuss fourier transform infrared (FTIR) spectroscopy, rheological properties of fluids, bioanalytical methods in oil & gas and environmental and safety considerations in laboratory analysis
- Identify laboratory role in drilling operations and apply production chemistry and scaling control including reservoir fluids and well testing
- Apply well stimulation and laboratory support, production water treatment laboratory and quality assurance and control in production laboratories
- Employ data interpretation and analysis, troubleshooting laboratory equipment and reporting and documentation standards
- Troubleshoot common production issues, apply laboratory auditing and compliance and discuss future trends and innovations in laboratory analysis

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of on laboratory analyses for oil & gas production for laboratory technicians & analysts, production engineers, process engineers, reservoir engineers, quality control/quality assurance (QC/QA) staff, petroleum engineers, health, safety, and environment (HSE) personnel, chemical engineers, field supervisors / operators, R&D personnel and oilfield services company staff.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

LE1010 - Page 2 of 8

LE1010-09-25|Rev.01|04 June 2025

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

LE1010 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Paul Patsi, MSc, BSc, is a Senior Analytical Chemist and an International Expert in Water & Waste Water Treatment Technology with over 25 years of extensive experience in Analytical Laboratory and Water & Wastewater Treatment Engineering. His expertise covers Laboratory Assessment, Microbiological Quality Assurance, Analytical Chemistry, Statistical Analysis, Laboratory Safety, Equipment & Infrastructure Management, Budgeting & Planning of

Laboratory Consumables, Business Administration, Personnel Management, Laboratory Management, Chemical Analysis, Laboratory Auditing, Risk Assessment, Microbiological Analysis of Water & Waste Water, Waste Water Treatment Analysis, Water Chemistry, HACCP, ISO 22000, ISO 17025, ISO 9001, Good Manufacturing Practice (GMP), Good Hygiene Practice (GHP) and Good Laboratory Practice (GLP). He is also an expert in microbiological indoor air quality, water biology, food sampling and calibration. He is currently the Head of Industrial Analytical Laboratory of PINDOS wherein he is in-charge of the budgeting, auditing, consumables, suppliers, personnel management, equipment and infrastructure management along with waste water treatment and water/environmental legislation.

During his career life, Mr. Paul has held key positions such as the Head of Microbiology & Chemical Laboratory, Head of Quality Control, Technical Consultant, Research Projects Specialist, Scientific Consultant, Biologist-Scientific Expert and Biologist for multi-billion companies like the European Union, Help LTD, Lake Pamvotis Municipality Company, Hellenic Centre for Marine Research, Cargill and Nestle just to name a few.

Mr. Paul has a Master's degree in Food Science & Food Technology from the University of Ioannina, Greece and a Bachelor's degree in Biology from the Aristotle University of Thessaloniki, Greece. He is a Certified Instructor/Trainer and a Member of the Society for Applied Microbiology, Society of Biological Scientist and the Global Coalition for Sustained Excellence in Food & Health Protection. He has further delivered various trainings, workshops, seminars, courses and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

LE1010 - Page 4 of 8 LE1010-09-25|Rev.01|04 June 2025

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 15 th of September 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Laboratory Analyses in Oil & Gas Production
0830 - 0930	Role of Laboratories in Production Processes • Key Laboratory Analyses for Oil and
0050 - 0550	Gas • Importance of Accuracy and Precision • Regulatory Standards and
	Compliance
0930 - 0945	Break
	Sample Collection & Handling
0945 - 1030	Sampling Techniques for Oil, Gas, and Water • Preserving Sample Integrity •
	Chain of Custody and Documentation • Common Challenges in Sample Collection
	Basic Analytical Equipment for Oil & Gas Labs
1030 - 1130	Common Laboratory Instruments Used in Oil & Gas • Calibration and
1000 1100	Maintenance Procedures • Troubleshooting Basic Lab Equipment • Safety
	Protocols for Lab Equipment
	Overview of Analytical Techniques
1130 – 1230	Spectroscopy Methods (UV, IR, etc.) • Chromatography (GC, HPLC) •
	<i>Gravimetric Analysis</i> • <i>Titration and Electrochemical Methods</i>
1230 - 1245	Break
	Hydrocarbon Analysis
1245 - 1330	Techniques for Analyzing Crude Oil and Natural Gas • Basic Composition
1210 1000	Analysis (C1–C5 and Higher Hydrocarbons) • Distillation Processes • Sample
	Preparation for Hydrocarbon Testing
	Water Quality Testing in Oil & Gas
1330 - 1420	Importance of Water Quality in Production • Common Water Contaminants
	(Salts, Minerals, etc.) • Water Sampling and Preservation • Analytical Techniques
	for Water Analysis
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2:	Tuesday, 16 th of September 2025
0730 - 0830	Acidity & Alkalinity Testing
	Importance of pH in Oil and Gas Production • Methods for Measuring pH • Acid-
	Base Titrations • Impact of pH on Corrosion and Scaling
0830 - 0930	Sulfur Content Analysis
	Measuring Sulfur in Crude Oil and Gas • Methods: X-ray Fluorescence (XRF),
	ASTM D4294 • Implications for Refining and Processing • Environmental
	Concerns of Sulfur Emissions
0930 - 0945	Break
0945 - 1045	Elemental Analysis: Metals & Trace Elements
	Detection of Metals in Oil and Gas Products • Techniques: Atomic Absorption
	Spectroscopy (AAS), ICP-OES • Common Elements: Nickel, Vanadium, and
	Mercury • Impact of Trace Metals on Equipment and Processing

ilm

...€FT

1045 - 1200	Gas Chromatography for Volatile Compounds
	Principles of Gas Chromatography • Sample Preparation for GC Analysis •
	Identifying and Quantifying Volatile Organic Compounds • Applications in Oil &
	Gas Quality Control
1200 – 1215	Break
	Viscosity & Density Measurement
1015 1000	Significance of Viscosity in Oil Production • Methods for Measuring Viscosity
1215 - 1550	(e.g., ASTM D445) • Density Measurements and Their Applications • Effect of
	Temperature on Viscosity and Density
	Corrosion & Scale Analysis
1220 1420	<i>Identifying and Analyzing Corrosion Products</i> • <i>Methods for Scale Detection (e.g.,</i>
1330 - 1420	X-ray Diffraction) • Impact of Corrosion and Scale on Production • Chemical
	Inhibitors Used in Production Processes
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 17 th of September 2025
	Advanced Chromatography Techniques
0720 0820	High-Performance Liquid Chromatography (HPLC) • Supercritical Fluid
0730 - 0830	Chromatography (SFC) • Comparison with Gas Chromatography • Applications
	in Oil & Gas Production
	Mass Spectrometry for Oil & Gas
0830 0030	Principles of Mass Spectrometry • Coupling MS with Chromatography (GC-MS,
0830 - 0930	LC-MS) • Quantitative and Qualitative Analysis • Advanced Applications in
	Contaminant Detection
0930 - 0945	Break
	Fourier Transform Infrared (FTIR) Spectroscopy
0945 1130	Working Principle of FTIR • FTIR in Analyzing Crude Oil and Gas •
0040 - 1100	Identifying Functional Groups in Hydrocarbons • Applications in Quality
	Control and Research
	Rheological Properties of Fluids
1130 - 1230	Measuring the Flow Characteristics of Oil and Gas • Instruments for Rheological
1100 1200	<i>Testing</i> • <i>Importance of Rheology in Transportation</i> • <i>Impact of Temperature and</i>
	Pressure on Fluid Behavior
1230 - 1245	Break
	Bioanalytical Methods in Oil & Gas
1245 - 1330	Use of Bioassays for Detecting Contamination • Microbiological Growth in
1210 1000	Production Systems • Biodegradation of Hydrocarbons • Monitoring and
	Controlling Microbial Activity
	Environmental & Safety Considerations in Laboratory Analysis
1330 - 1420	Health, Safety, and Environmental Regulations • Laboratory Waste Disposal and
10000 1120	Chemical Handling • Safety Standards for Lab Personnel • Managing
	Environmental Risks in Oil & Gas Production
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
1.120	Tomorrow
1430	Lunch & End of Day Three

LE1010 - Page 6 of 8 LE1010-09-25|Rev.01|04 June 2025

Day 4:	Thursday, 18 th of September 2025
	Laboratory Role in Drilling Operations
0720 0820	Supporting Drilling Fluid Analysis • Monitoring Cuttings and Mud Properties
0730 - 0830	• Laboratory Analysis of Drilling Fluids • Importance of Real-Time Data in
	Drilling Operations
	Production Chemistry & Scaling Control
0830 0030	Laboratory Analysis of Scaling Potential • Techniques for Identifying Scale-
0030 - 0930	Forming Compounds • Chemical Treatments to Control Scaling • Impact of Scale
	on Production Efficiency
0930 - 0945	Break
	Reservoir Fluids & Well Testing
0045 1130	Analyzing Fluids from Production Wells • Techniques for Well Testing and
0945 - 1150	Fluid Sampling • Reservoir Fluid Characterization Methods • Laboratory
	Support for Reservoir Management
	Well Stimulation & Laboratory Support
1130 - 1230	Laboratory Analysis of Fracturing Fluids • Monitoring Additives and Proppants
1100 1200	• Analysis of Gel Strength and Viscosity • Laboratory Tests for Well Stimulation
	Optimization
1230 - 1245	Break
	Production Water Treatment Laboratory
1245 - 1330	Laboratory Analysis for Water Treatment • Identifying Contaminants in
1210 1000	Produced Water • Chemical Treatment for Water Disposal • Laboratory's Role in
	Monitoring Treatment Efficacy
	Quality Assurance & Control in Production Laboratories
1330 - 1420	Establishing QA/QC Protocols for Lab Analyses • Methods for Ensuring
1000 1120	Accuracy in Results • Validating Analytical Methods • Continuous
	Improvement Practices in the Lab
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today and Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day Four

Day 5: F	riday, 19 th of September 2025
-	Data Interpretation & Analysis
0730 – 0830	Interpreting Laboratory Results • Statistical Analysis of Test Data • Data
	Correlation and Trends • Reporting Results to Operations Teams
	Troubleshooting Laboratory Equipment
0020 0020	Identifying Common Lab Equipment Issues • Basic Troubleshooting Techniques
0830 - 0930	• Calibration and Recalibration Procedures • Preventive Maintenance of
	Analytical Equipment
0930 - 0945	Break
	Reporting & Documentation Standards
0045 1030	Best Practices in Reporting Laboratory Findings • Standards for Lab Report
0945 - 1050	<i>Formatting</i> • <i>Importance of Traceability and Documentation</i> • <i>Compliance with</i>
	Industry Standards (e.g., ISO)
1030 - 1115	Troubleshooting Common Production Issues
	Identifying Production Problems through Laboratory Data • Troubleshooting
	Scaling, Corrosion, and Sediment Issues • Solving Water Contamination Issues •
	Corrective Actions Based on Lab Analysis

1115 - 1200	Laboratory Auditing & Compliance
	Auditing Laboratory Processes for Compliance • Internal and External Audits •
	Regulatory Requirements for Oil & Gas Labs • Maintaining ISO Certification
	for Laboratories
1200 - 1215	Break
1015 1045	Future Trends & Innovations in Laboratory Analysis
	Emerging Technologies in Oil & Gas Laboratory Analyses • Digitalization and
1215 - 1545	Automation in Lab Operations • Future Research Areas in Oil & Gas Laboratory
	<i>Testing</i> • <i>Advancements in Remote Sensing and Monitoring Technologies</i>
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

LE1010 - Page 8 of 8

