COURSE OVERVIEW ME0562-4D Pump Selection, Installation, Performance & Control

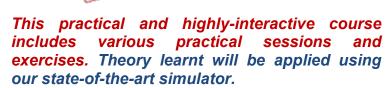
Course Title

Pump Selection, Installation, Performance & Control

Course Date/Venue

May 18-21, 2026/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference ME0562-4D


Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Description

This course is designed to provide delegates with a detailed and up-to-date overview on the proper selection, installation, performance and control of pumps. It covers pump construction covering centrifugal pump, pump curves, characteristics, most common end-suction and in-line pump types, impeller and casing types, single-stage and multistage pumps, long coupled and close-coupled pumps as well as various types of pumps and mechanical shaft seals including its components, functions and factors affecting the seal performance.

The course will enable the participants to describe motors, liquids and materials and employ proper installation of pumps as well as analyze pump performance, system characteristics and pumps connected in series and parallel. Participants will be able to adjust pump performance and describe speed controlled pump solutions for constant pressure and temperature control, constant differential pressure in a circulating system and flow compensated differential pressure control.

Further, the advantages of speed control and pumps with integral frequency converter as well as its basic function, characteristics, components and special conditions will be discussed and lifecycle costs equation and calculation will be illustrated during the course.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on the selection, installation, performance and control of various types of industrial pumps
- Recognize pump construction covering centrifugal pump, pump curves, characteristics, most common end-suction and in-line pump types, impeller and casing types, single-stage and multistage pumps as well as long coupled and closecoupled pumps
- Identify the various types of pumps and mechanical shaft seals including its components, functions and factors affecting the seal performance
- Describe motors, liquids and materials as well as employ proper installation of pumps
- Analyze pump performance, system characteristics and pumps connected in series and parallel
- Adjust pump performance and describe speed controlled pump solutions for constant pressure and temperature control, constant differential pressure in a circulating system and flow compensated differential pressure control
- Explain the advantages of speed control and pumps with integral frequency converter
- Enumerate the basic function, characteristics, components and special conditions of frequency converter
- Illustrate life cycle costs equation and calculation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course covers systematic techniques and methodologies in the selection, installation, performance and control of pumps for plant and maintenance engineers, process engineers, maintenance personnel, supervisors and reliability specialists working in a wide variety of process plant environments, such as petrochemical, plastics, power utilities, oil, gas, water utilities, wastewater etc. The course is also highly valuable to senior maintenance technical staff who are involved with pumps, their operation and their maintenance.

Course Fee

US\$ 4,500 per Delegate+ **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a Senior Process & Mechanical Maintenance Engineer with over 25 years of extensive experience within the Oil & Gas, Refinery, Petrochemical & Power industries. His expertise widely covers in the areas of Ammonia Manufacturing & Process Troubleshooting, Distillation Towers, Crude Oil Distillation, Ammonia Storage & Loading Systems, Operational Excellence in Ammonia Plants, Fertilizer Storage Management (Ammonia & Urea), Fertilizer

Manufacturing Process Technology, Sulphur Recovery, Phenol Recovery & Extraction, Refining Process & Petroleum Products, Refinery Planning & Economics, Hydrotreating & Hydro-processing, Separators in Oil & Gas Industry, Gas Testing & Energy Isolations, Industrial Liquid Mixing, Extractors, Fractionation, Water Purification, Water Transport & Distribution, Environmental Emission Control, Process Plant Troubleshooting & Engineering Problem Solving, Startup Process Plant Performance. Plant & Shutdown. Troubleshooting Techniques and Oil & Gas Operation/Surface Facilities. Further, he is also well-versed in Rotating Machinery (BRM), Rotating Equipment Operation & Troubleshooting, Root Cause Analysis (RCA), Process Plant Shutdown, Turnaround & Troubleshooting, Planning & Scheduling Shutdowns & Turnarounds, Optimizing Equipment Maintenance & Replacement Decisions, Maintenance Planning & Scheduling, Material Cataloguing, Maintenance, Reliability & Asset Management Best Practices, Storage Tanks Operations & Measurements, Tank Inspection & Maintenance, Pressure Vessel Operation, Flare & Relief System, Flaring System Operation, PSV Inspection & Maintenance, Centrifugal & Reciprocating Compressor, Screw Compressor Troubleshooting, Heat Exchanger Overhaul & Testing, Pipe Stress Analysis, Control Valves & Actuators, Vent & Relief System, Centrifugal & Reciprocating Pump Installation & Repair, Heat Exchanger Troubleshooting & Maintenance, Steam Trapping & Control, Control & ESD System and Detailed Engineering Drawings, Codes & Standards.

During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician, Senior Lecturer and Senior Consultant/Trainer for various companies such as the Sasol Ltd., Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a **Bachelor's** degree in **Chemical Engineering** and a **Diploma** in **Mechanical Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (**ILM**) and has delivered various trainings, workshops, seminars, courses and conferences internationally.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

Simulators (Hardware & Software) & Videos 20%

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday 18th of May 2026

Day 1:	Monday, 18 th of May 2026
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Pump Construction The Centrifugal Pump ● Pump Curves ● Characteristics of the Centrifugal Pump ● Most Common End-Suction & In-Line Pump Types ● Impeller Types (Axial Forces) ● Casing Types (Radial Forces) ● Single-Stage Pumps ● Multistage Pumps ● Long-Coupled and Close-Coupled Pumps
0930 - 0945	Break
0945 – 1100	Types of Pumps Standard Pumps • Split-Case Pumps • Hermetically Sealed Pumps • Sanitary Pumps • Wastewater Pumps • Immersible Pumps • Borehole Pumps • Positive Displacement Pumps
1100 - 1230	Mechanical Shaft Seals The Mechanical Shaft Seal's Components & Function ● Balanced & Unbalanced Shaft Seals ● Types of Mechanical Shaft Seals ● Seal Face Material Combinations ● Factors Affecting the Seal Performance
1230 - 1245	Break
1230 - 1420	Motors Standards ● Motor Start-Up ● Voltage Supply ● Frequency Converter ● Motor Protection
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2: Tuesday, 19th of May 2026

Duy L.	racoday, 10 or may 2020
0730 - 0930	Liquids Viscous Liquids ● Non-Newtonian Liquids ● The Impact of Viscous Liquids on the Performance of a Centrifugal Pump ● Selecting the Right Pump for a Liquid with Antifreeze ● Calculation Example ● Computer Aided Pump Selection for Dense and Viscous Liquids
	Selection for Dense and Viscous Equals
0930 - 0945	Break
0945 - 1100	Materials What is Corrosion? • Types of Corrosion • Material & Metal Alloys • Ceramics • Plastics • Rubber • Coatings

1100 – 1230	Pump Installation New Installation • Existing Installation-Replacement • Pipe Flow for Single-Pump Installation • Pump Installation • Limitation of Noise & Vibrations • Sound Level (L)
1230 - 1245	Break
1245 – 1420	Pump Performance Hydraulic Terms ● Electrical Terms ● Liquid Properties
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Wednesday, 20th of May 2026

Day 3.	Wednesday, 20° Of May 2020
0730 - 0930	System Characteristics Single Resistances • Closed and Open Systems
0930 - 0945	Break
0945 - 1030	Pumps Connected in Series & Parallel
	Pumps in Parallel • Pumps Connected in Series
1030 - 1100	Adjusting Pump Performance Throttle Control • Bypass Control • Modifying Impeller Diameter • Speed Control • Comparison of Adjustment Methods • Overall Efficiency of the Pump System • Example: Relative Power Consumption when the Flow is Reduced by 20%
1100 - 1230	Speed-Controlled Pump Solutions Constant Pressure Control • Constant Temperature Control • Constant Differential Pressure in a Circulating System • Flow-Compensated Differential Pressure Control
1230 - 1245	Break
1245 - 1420	Advantages of Speed Control
1420 - 1430	Recap
1430	Lunch & End of Day Three

Dav 4: Thursday, 21st of May 2026

Day 4.	Thursday, 21 Or may 2020
0730 – 0930	Advantages of Pumps with Integral Frequency Converter
	Performance Curves of Speed-Controlled Pumps • Speed-Controlled Pumps in
	Different Systems
0930 - 0945	Break
0945 – 1100	Frequency Converter
	Basic Function & Characteristics • Components of the Frequency Converter •
	Special Conditions Regarding Frequency Converters
	Life Cycle Cost Equation
	Initial Costs & Purchase Price (Cic) • Installation & Commissioning Costs
1100 1220	(Cin) • Energy Costs (Ce) • Operating Costs(Co) • Environmental Costs
1100 – 1230	(Cenv) • Life Cycle Cost Equation (cont'd)
	Maintenance & Repair Costs (Cm) ● Downtime Costs, Loss of Production (Cs)
	• Decommissioning & Disposal Costs (co)
1230 – 1245	Break
1245 - 1345	Life Cycle Costs Calculation-An Example
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Centrifugal Pumps and Troubleshooting Guide 3.0".

Centrifugal Pumps and Troubleshooting Guide 3.0

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

