

COURSE OVERVIEW TE0308 Water Quality Management

Course Title

Water Quality Management

Course Date/Venue

Session 1: September 01-05, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Session 2: December 22-26, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

TE0308

Course Duration/Credits

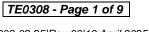
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Water Quality Management. lt covers the water quality management framework, key physical parameters, chemical parameters, biological parameters and interactions between physical, chemical, biological factors; the sampling methods and tools, laboratory analysis techniques, field measurement techniques and data recording and analysis; the regulatory standards for water quality; and the sources of water contamination and water quality management systems.

Further, the course will also discuss the water treatment processes, coagulation and flocculation, sedimentation and filtration, disinfection and chlorination as well as desalination and advanced treatment technologies; the types of residuals generated, residuals disposal and reuse strategies; the environmental impact of residual disposal and compliance with environmental regulations; the water distribution system design, water quality in distribution systems, hydraulic modeling and water corrosion and scaling in water distribution, water quality monitoring in distribution networks; and the emergency response for water quality issues.



During this interactive course, participants will learn the health impacts and environmental impacts of water quality; the integrated water resources management (IWRM), water reuse and recycling; the sustainable practices in water quality management and risk assessment and management in water quality; the impact of climate change on water quality and changes in precipitation patterns and water contamination; the climate resilience strategies in water management, climate adaptation and mitigation strategies; the remote sensing and drones for water quality monitoring, artificial intelligence and machine learning in water management; the importance of public communication in water quality issues and effective water quality communication strategies; and engaging the public in water conservation and quality management.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on water quality management
- Discuss water quality management framework, key physical parameters, chemical parameters, biological parameters and interactions between physical, chemical, and biological factors
- Carryout sampling methods and tools, laboratory analysis techniques, field measurement techniques and data recording and analysis
- Review regulatory standards for water quality and identify the sources of water contamination and water quality management systems
- Illustrate water treatment processes, coagulation and flocculation, sedimentation and filtration, disinfection and chlorination as well as desalination and advanced treatment technologies
- Identify the types of residuals generated, residuals disposal and reuse strategies. environmental impact of residual disposal and compliance with environmental regulations
- Determine water distribution system design, water quality in distribution systems, hydraulic modeling and water quality
- Illustrate corrosion and scaling in water distribution, water quality monitoring in distribution networks and emergency response for water quality issues
- Identify the health impacts and environmental impacts of water quality and discuss integrated water resources management (IWRM), water reuse and recycling
- Implement sustainable practices in water quality management and risk assessment and management in water quality
- Discuss the impact of climate change on water quality and changes in precipitation patterns and water contamination
- Apply climate resilience strategies in water management, climate adaptation and mitigation strategies
- Use remote sensing and drones for water quality monitoring and artificial intelligence and machine learning in water management
- Discuss the importance of public communication in water quality issues, develop effective water quality communication strategies and engage the public in water conservation and quality management

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of water quality management for environmental engineers & scientists, water treatment plant operators and technicians, health, safety and environment (HSE) officers, facility and utility managers, municipal and government authorities, quality assurance & quality control (QA/QC) inspectors, public health specialists and hygiene officers and industrial plant operators.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Nikolas Karnavos, MSc, BSc, is an International Expert in Water Treatment Technology with over 35 years of extensive experience within the Oil, Gas, Refinery and Petrochemical industries. His expertise widely covers Wastewater Treatment, Oilfield Water Treatment, Best Practice in Sewage & Industrial Wastewater Treatment & Environmental Protection, Treating & Handling Oily Water, Water Chemistry for Power Plant, Industrial

Water Treatment in Refineries & Petrochemical Plants, Water Pollution Control, Permitting & Enforcing Drilling for Groundwater, Hydraulic Modelling, Water Network Design, Reverse Osmosis Treatment Technology and Chlorination System. Further, he is also well-versed in Laboratory Control of a Wastewater Plant, Environmental Online Analyzers (Air Water), Chromatography and various instrumental methods of analysis such as Water Analysis & Quality Control, Water and Wastewater Chemical Analysis, Statistical Data and Laboratory Analysis, Gas Analysis, Qualitative Fuel Analysis, Environmental Chemical Analysis, Laboratory Environmental Analysis including Water Quality Testing, Water Testing (ICP & Ion Chromatography), Process Water and Oily **Sludge Treatment**, Atomic Absorption Effluents, Spectroscopic Methods in Analytical Chemistry, Analytical Method Development and Methods of Environmental Measurements (Water, Air, Liquid & Solid Wastes).

Mr. Karnavos was the Laboratory Manager of Exxon wherein he was responsible for ISO 17025 certification, upgrading laboratory equipment in refinery, petrochemical and polypropylene plants, upgrading and extending LIMS, handling the transition plan process of the existing laboratory to a new as well as formulating and executing the plans for applied research and technology transfer. During his career life, he had occupied several significant positions as the Laboratory Analyst, Laboratory Professor, Quality Manager, Partner & Managing Director, Environmental Engineer, Process Engineer, Environmental Management Corporate Department Head and Quality Control & Plastics Application Head with different international companies like the AQUACHEM, Hellenic Petroleum (EXXON) and Technological Institute.

Mr. Karnavos holds a Master degree in Chemical Engineering and Bachelor degrees in Mechanical Engineering and Petroleum Engineering from the Aristotelian University of Thessaloniki, Technological Institute and KATEE Kavala respectively. He is an Accredited Trainer for the Organization for the Certifications & Vocational Guidance (EOPPEP) and an Accredited Environmental Auditor from the IEMA. Further, he is the President of Greek Association of Chemical Engineers and an active member of various professional engineering bodies internationally like the IEMA, Technical Chamber of Greece and the CONCAWE. He also published numerous books and scientific papers and delivered various trainings and workshops worldwide.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

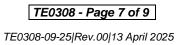
Day 1

0730 - 0805 Registration & Coffee	Day 1	
0815 - 0830 PRE-TEST Overview of Water Quality Management Importance of Water Quality Management • Key Regulations and Standards • The Water Quality Management Framework • Global versus Local Water Quality Concerns 0930 - 0945 Break Physical, Chemical & Biological Water Quality Parameters Key Physical Parameters (Temperature, Turbidity, Color) • Chemical Parameters (Ph, Dissolved Oxygen, Conductivity) • Biological Parameters (Microbial Content, Pathogens) • Interactions Between Physical, Chemical and Biological Factors Water Quality Monitoring Techniques Sampling Methods and Tools • Laboratory Analysis Techniques • Field Measurement Techniques • Data Recording and Analysis Regulatory Standards for Water Quality Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification Requirements • Compliance Strategies 1215 - 1230 Break Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be	0730 - 0800	Registration & Coffee
Overview of Water Quality Management Importance of Water Quality Management • Key Regulations and Standards • The Water Quality Management • Key Regulations and Standards • The Water Quality Management • Key Regulations and Standards • The Water Quality Management • Key Regulations and Standards • The Water Quality Management • Key Regulations and Standards • The Water Quality Management • Key Regulations and Standards • The Water Quality Management • Key Regulations and Standards • The Water Quality Parameters (Temperature, Turbidity, Color) • Chemical Parameters (Ph, Dissolved Oxygen, Conductivity) • Biological Parameters (Microbial Content, Pathogens) • Interactions Between Physical, Chemical and Biological Factors Water Quality Monitoring Techniques Sampling Methods and Tools • Laboratory Analysis Techniques • Field Measurement Techniques • Data Recording and Analysis Regulatory Standards for Water Quality Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification Requirements • Compliance Strategies 1215 - 1230 Break Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0800 - 0815	Welcome & Introduction
Importance of Water Quality Management • Key Regulations and Standards • The Water Quality Management Framework • Global versus Local Water Quality Concerns	0815 - 0830	PRE-TEST
Physical, Chemical & Biological Water Quality Parameters Key Physical Parameters (Temperature, Turbidity, Color) • Chemical Parameters (Ph, Dissolved Oxygen, Conductivity) • Biological Parameters (Microbial Content, Pathogens) • Interactions Between Physical, Chemical and Biological Factors Water Quality Monitoring Techniques Sampling Methods and Tools • Laboratory Analysis Techniques • Field Measurement Techniques • Data Recording and Analysis Regulatory Standards for Water Quality Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification Requirements • Compliance Strategies 1215 - 1230 Break Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow		Importance of Water Quality Management • Key Regulations and Standards • The Water Quality Management Framework • Global versus Local Water Quality Concerns
Key Physical Parameters (Temperature, Turbidity, Color) • Chemical Parameters (Ph, Dissolved Oxygen, Conductivity) • Biological Parameters (Microbial Content, Pathogens) • Interactions Between Physical, Chemical and Biological Factors Water Quality Monitoring Techniques Sampling Methods and Tools • Laboratory Analysis Techniques • Field Measurement Techniques • Data Recording and Analysis Regulatory Standards for Water Quality Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification Requirements • Compliance Strategies Break Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0930 - 0945	Break
Sampling Methods and Tools • Laboratory Analysis Techniques • Field Measurement Techniques • Data Recording and Analysis Regulatory Standards for Water Quality Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification Requirements • Compliance Strategies 1215 - 1230 Break Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0945 - 1030	Key Physical Parameters (Temperature, Turbidity, Color) • Chemical Parameters (Ph, Dissolved Oxygen, Conductivity) • Biological Parameters (Microbial Content, Pathogens) • Interactions Between Physical, Chemical and
Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification Requirements • Compliance Strategies 1215 - 1230 Break Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1030 - 1130	Sampling Methods and Tools • Laboratory Analysis Techniques • Field
Sources of Water Contamination Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1130 – 1215	Local Regulations and Guidelines (UAE Water Quality Regulations) • International Standards (WHO, EPA) • Water Quality Certification
Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors Water Quality Management Systems Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1215 - 1230	Break
Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous Improvement Models (PDCA Cycle) Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1230 – 1330	Point Source Pollution versus Non-Point Source Pollution • Industrial, Agricultural and Urban Runoff • Wastewater Discharge • Natural Contamination Factors
1420 – 1430 Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1330 – 1420	Frameworks for Water Quality Management • Decision-Making Tools and Risk Assessments • Water Quality Management Strategies • Continuous
1430 Lunch & End of Day One		Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
	1430	Lunch & End of Day One

Day 2

Duy L	
0730 – 0830	Overview of Water Treatment Processes Types of Water Treatment (Primary, Secondary, Tertiary) • Goals and Objectives of Water Treatment • Key Principles of Water Treatment • Overview of Treatment Plant Operations
0830 - 0930	Coagulation & Flocculation The Process and Purpose of Coagulation and Flocculation • Chemical Coagulants and their Types • Flocculation Basin Design and Operation • Troubleshooting Common Issues in Coagulation
0930 - 0945	Break

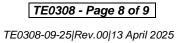
	Sedimentation & Filtration
0945 - 1100	Sedimentation Process and Design • Types of Sedimentation Tanks and
	Clarifiers • Filtration Methods (Rapid Sand Filters, Activated Carbon Filters) •
	Maintenance and Performance Monitoring
	Disinfection & Chlorination
1100 – 1215	Disinfection Methods (Chlorination, Ozone, UV) • Disinfection By-Products
1100 - 1213	and Health Considerations • Chlorine Dosing and Control • Advanced
	Disinfection Technologies
1215 - 1230	Break
1230 – 1330	Desalination & Advanced Treatment Technologies
	Reverse Osmosis and its Applications • Desalination Process and Challenges •
	Advanced Oxidation Processes (AOP) • Membrane Filtration Technologies
	Water Treatment Residuals Management
1330 – 1420	Types of Residuals Generated (Sludge, Spent Filters, Spent Chemicals) •
	Residuals Disposal and Reuse Strategies • Environmental Impact of Residual
	Disposal • Compliance with Environmental Regulations
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two


Day 3

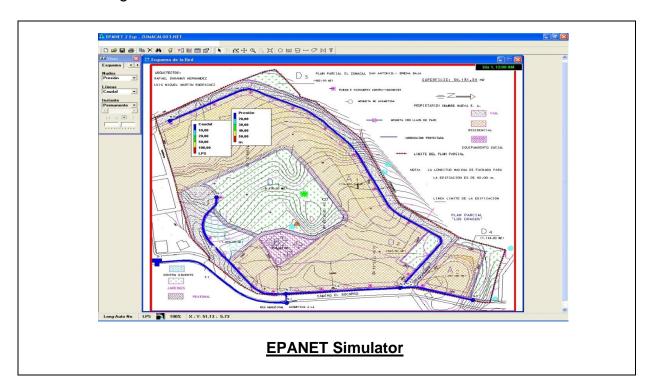
Day 5	
	Water Distribution System Design
0730 - 0830	Overview of Distribution Network Design • Types of Water Distribution
	Systems • Key Design Considerations (Flow Rates, Pressure) • Geographic
	Information Systems (GIS) in Distribution Design
	Water Quality in Distribution Systems
0830 - 0930	Factors Affecting Water Quality in Pipelines • The Role of Pipe Materials
0030 - 0930	(Steel, PVC, Cast Iron) • Microbial Regrowth in Distribution Systems •
	Contamination Risks in Water Distribution
0930 - 0945	Break
	Hydraulic Modeling & Water Quality
0945 - 1100	Principles of Hydraulic Modeling • Water Quality Modeling in Distribution
0943 - 1100	Networks • Simulation of Contamination and Recovery Scenarios • Case
	Studies of Water Quality Modeling
	Corrosion & Scaling in Water Distribution
1100 - 1215	Causes of Corrosion in Pipes • Types of Corrosion and their Effects • Corrosion
	Control Strategies • Scaling and its Impact on System Efficiency
1215 – 1230	Break
	Water Quality Monitoring in Distribution Networks
1230 - 1330	Real-Time Water Quality Monitoring • Key Parameters to Monitor in
1230 - 1330	Distribution Systems • Water Quality Sensors and Technology • Managing
	Water Quality Data for Decision-Making
1330 – 1420	Emergency Response for Water Quality Issues
	Contingency Planning for Water Contamination • Rapid Response Protocols •
	Public Notification Systems • Case Study of Recent Water Quality
	Emergencies
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Health Impacts of Water Quality Pathogens in Water and Associated Diseases • Waterborne Diseases (Cholera, Dysentery, Typhoid) • Water Quality Indicators for Public Health • Public Health and Safety Regulations Environmental Impacts of Water Quality Eutrophication and Algal Blooms • Impact on Aquatic Ecosystems (Bioaccumulation, Biodiversity Loss) • Water Quality and Wetland Health • Environmental Risk Assessments 0930 - 0945 Break Integrated Water Resources Management (IWRM) Principles of IWRM • Sustainable Water Quality Management • Stakeholder Engagement and Policy Frameworks • Case Studies of IWRM in Practice Water Reuse & Recycling Types of Water Reuse (Direct and Indirect) • Benefits and Challenges of Water Recycled Water Use 1215 - 1230 Break Sustainable Practices in Water Quality Management Best Practices for Sustainable Water Quality Management Best Practices for Sustainable Water Quality Management Best Practices for Sustainable Water Quality Management • The Role of Policy in Promoting Sustainability Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow 1430 Lunch & End of Day Four	Day +	
Eutrophication and Algal Blooms • Impact on Aquatic Ecosystems (Bioaccumulation, Biodiversity Loss) • Water Quality and Wetland Health • Environmental Risk Assessments 0930 - 0945 Break Integrated Water Resources Management (IWRM) Principles of IWRM • Sustainable Water Quality Management • Stakeholder Engagement and Policy Frameworks • Case Studies of IWRM in Practice Water Reuse & Recycling Types of Water Reuse (Direct and Indirect) • Benefits and Challenges of Water Recycling • Treatment Technologies for Recycled Water • Regulations for Recycled Water Use Break Sustainable Practices in Water Quality Management Best Practices for Sustainable Water Quality Management • Low-Impact Development Strategies • Green Infrastructure in Water Management • The Role of Policy in Promoting Sustainability Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0730 – 0830	Pathogens in Water and Associated Diseases • Waterborne Diseases (Cholera, Dysentery, Typhoid) • Water Quality Indicators for Public Health • Public
Integrated Water Resources Management (IWRM) Principles of IWRM • Sustainable Water Quality Management • Stakeholder Engagement and Policy Frameworks • Case Studies of IWRM in Practice Water Reuse & Recycling	0830 - 0930	Eutrophication and Algal Blooms • Impact on Aquatic Ecosystems (Bioaccumulation, Biodiversity Loss) • Water Quality and Wetland Health •
Principles of IWRM • Sustainable Water Quality Management • Stakeholder Engagement and Policy Frameworks • Case Studies of IWRM in Practice Water Reuse & Recycling Types of Water Reuse (Direct and Indirect) • Benefits and Challenges of Water Recycling • Treatment Technologies for Recycled Water • Regulations for Recycled Water Use 1215 - 1230 Break Sustainable Practices in Water Quality Management Best Practices for Sustainable Water Quality Management • Low-Impact Development Strategies • Green Infrastructure in Water Management • The Role of Policy in Promoting Sustainability Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0930 - 0945	Break
Types of Water Reuse (Direct and Indirect) • Benefits and Challenges of Water Recycling • Treatment Technologies for Recycled Water • Regulations for Recycled Water Use 1215 - 1230 Break Sustainable Practices in Water Quality Management Best Practices for Sustainable Water Quality Management • Low-Impact Development Strategies • Green Infrastructure in Water Management • The Role of Policy in Promoting Sustainability Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0945 – 1100	Principles of IWRM • Sustainable Water Quality Management • Stakeholder
Sustainable Practices in Water Quality Management Best Practices for Sustainable Water Quality Management • Low-Impact Development Strategies • Green Infrastructure in Water Management • The Role of Policy in Promoting Sustainability Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1100 – 1215	Types of Water Reuse (Direct and Indirect) • Benefits and Challenges of Water Recycling • Treatment Technologies for Recycled Water • Regulations for
Best Practices for Sustainable Water Quality Management • Low-Impact Development Strategies • Green Infrastructure in Water Management • The Role of Policy in Promoting Sustainability Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1215 - 1230	J
Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1230 - 1330	Best Practices for Sustainable Water Quality Management • Low-Impact Development Strategies • Green Infrastructure in Water Management • The
1420 – 1430 Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1330 – 1420	Risk Assessment & Management in Water Quality Identifying Water Quality Risks • Risk Assessment Methodologies (HAZOP, FMEA) • Mitigating Risks Through Management Strategies • Crisis Management in Water Quality Incidents
1430 Lunch & End of Day Four		Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
	1430	Lunch & End of Day Four


Day 5

Case Study: Water Quality Management in Arid Regions
Challenges of Water Quality Management in Arid Climates • Innovative
Solutions for Water Scarcity • Water Quality Monitoring Systems in Arid
Regions • Government Policies and Regulatory Challenges
Case Study: Urban Water Quality Management
Managing Water Quality in Growing Urban Areas • Stormwater Management
and Urban Runoff • Addressing Pollution in Urban Water Systems • Smart
Technologies for Urban Water Quality
Break
Water Quality & Climate Change
The Impact of Climate Change on Water Quality • Changes in Precipitation
Patterns and Water Contamination • Climate Resilience Strategies in Water
Management • Climate Adaptation and Mitigation Strategies
Emerging Technologies in Water Quality Management
Remote Sensing and Drones for Water Quality Monitoring • Artificial
Intelligence and Machine Learning in Water Management • Smart Water
Quality Sensors and IoT Solutions • The Future of Water Quality
Management



1230 - 1245	Break
1245 - 1345	Water Quality Risk Communication Importance of Public Communication in Water Quality Issues • Developing Effective Water Quality Communication Strategies • Crisis Communication During Water Contamination Events • Engaging the Public in Water Conservation and Quality Management
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the latest revision of "EPANET" simulators.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

