

COURSE OVERVIEW PE0531 Flare, Blowdown & Pressure Relief Systems

Course Title

Flare, Blowdown & Pressure Relief Systems

Course Date/Venue

December 08-12, 2024/Abu Dhabi Meeting Room, The Tower Plaza Hotel. Dubai, UAE

Course Reference

PE0531

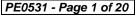
Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

The flare, blowdown and pressure relief systems are the most important elements for emergency and operational discharge of flammable substances in the process facilities. Safety relief and flare systems control vapors and liquids that are released by pressure-relieving devices and blow-downs. Pressure relief is an automatic, planned release when operating pressure reaches a predetermined level. Blowdown normally refers to the intentional release of material, such as blowdowns from process unit start-ups, furnace blowdowns, shutdowns. and emergencies. Vapor depressuring is the rapid removal of vapors from pressure vessels in case of fire. This may be accomplished by the use of a rupture disc, usually set at a higher pressure than the relief valve.

The principal elements of the safety relief and flare systems are the individual pressure relief devices, the flare piping system, the flare separator drum, and the flare (including igniters, tips, sealing devices, purge and steam injection for smokeless burning). Application of relief devices must comply with appropriate ASME Vessel Codes and API 520/521 standards.



Design of relief devices must comply with applicable national codes and laws as well as the requirements of the insurance covering the plant or installation. National regulations not only cover safety but also environmental considerations such as air and water pollution and noise abatement.

This course presents a convenient overview of relief system details based on the full scope of API, ASME, and other code and specification requirements. It covers all aspects of relief flare systems from the emergency relief sources through the valving and flare network right to the stack and flare tip. Descriptions and design criteria will be outlined for flare tips, seals, stacks, knockout drums, header systems, relief valves, depressurization systems and basic hazard analysis. Alternative design methods will be also described with reference to the specific nature of relief and flare systems worldwide.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply an in-depth knowledge and skills in the design, operation and maintenance of flare, blowdown and pressure relief systems
- Discuss product specification and identify the different types of flow measurement
- Review the various instrumentation and sensing devices used in flare, blowdown and pressure relief systems
- · Carryout installation, troubleshooting and calibration of the control systems used in plant
- Determine the components and function of the relief systems and practice the sizing and installation of the relieving devices
- Identify the types, features and application of flare systems
- Determine the applicable codes, standards and recommended practices for flare, blowdown and pressure relief systems
- Acquire knowledge on product storage and tanks and recognize the importance of product recovery
- Evaluate the scope of waste heat recovery and explain its role in flare and pressure relief systems
- Operate, maintain and troubleshoot flare, blowdown and pressure relief system in a professional manner

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides systematic techniques on the design, operation and maintenance of flare, blowdown and pressure relief systems. Operations personnel, supervisors, engineers, maintenance personnel, senior plant supervisors, operations process support engineers, design engineers and process engineers will gain an outstanding knowledge from the practical and operational aspects of the course.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, PgDip, BSc, is a Senior Process & Petroleum Engineer with 40 years of integrated experience within the Oil & Gas industries. His specialization widely covers in the areas of Artificial Lift System, Artificial Lift Methods, Petroleum Economics, Petroleum Refinery Processing, Refinery Material Balance Calculation, Refinery Gas Treating, Asset Operational Integrity, Drilling Operations, Drilling Rig, Bits & BHA, Mud Pumps, Mud logging Services, Wireline & LWD Sensors, Casing & Cementing Operation, Completion & Workover Operations, Petroleum Engineering, Production Optimization, Well

Completion, Rig & Rigless Workover, Advanced PVT & EOS Characterization, PVT/Fluid Characterization/EOS. Advanced Phase Behaviour & EOS Characterization. PVT Properties of Reservoir Fluids. **Directional Drilling** Fundamentals, Application & Limitation, Horizontal & Multilateral Wells (Analysis & Design), Directional, Horizontal & Multilateral Drilling, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Root Cause Analysis Study, Root Cause Analysis Techniques & Methodologies, Process Hazard Analysis (PHA), Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the General Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Engineer from Agiba Petroleum Company and Engineering Consultant/Instructor for various Oil & Gas companies as well as a Senior Instructor/Lecturer for PhD, Master & BSc degree students from various universities such as the Cairo University, Helwan University, British University in Egypt, Banha University.

Dr. Hesham has **PhD** and **Master** degrees as well as **Post Graduate Diploma** in **Mechanical Power Engineering** and a **Bachelor** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is an active member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

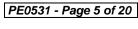
Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Sunday, 08th of December 2024 Dav 1


	111 111
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Product Specification
0020 0020	LP-Gas Specification Parameters • Vapor Pressure • Moisture Content •
0830 – 0930	Sulfur Content • Volatile Residue • Non-Volatile Residue • Non-
	Specification Contaminants • Odorization
0930 - 0945	Break
	Flow Measurement
0945 - 1100	Flow Calculation Guide • Gas Measurement & Pipe Rupture • Liquid
0943 - 1100	Measurement • Mass Measurement • Steam Measurement • Miscellaneous
	Measurement Devices ● Auxiliary Equipment and Common Terms
	Instrumentation & Sensing Devices
	General Instrumentation Considerations • Identification • Pneumatic Power
1100 – 1230	Supplies • Electronic Power Supplies • Pressure Sensors • Level Sensors •
1100 - 1230	Temperature Sensors • Flow Sensors • Signal Transmitters • Pneumatic
	Transmitters • Electronic Transmitters • Signal Converters • Recorders and
	Indicators
1230 - 1245	Break

1245 – 1420	Control Systems Control Concepts • Control Modes and Controllers • Controller Tuning • Control Valves • Liquid Service • Sizing Calculation Procedure • Installation, Troubleshooting, and Calibration • Digital Computers • Digital First-Level Control Systems • Analytical Instruments	
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day One	

Monday, 09th of December 2024 Day 2

Day Z	Monday, 05 of December 2024
0730 - 0930	Relief Systems
	Relief Device Design • Blocked Discharge • Fire Exposure • Tube Rupture
0930 - 0945	Break
0945 – 1115	Relief Systems (cont'd)
	Control Valve Failure • Thermal Expansion • Utility Failure
1115 – 1230	Relieving Devices
1113 - 1230	Safety Relief Valves • Rupture Disk • Sizing of Relief Devices
1230 – 1245	Break
1245 – 1420	Relieving Devices (cont'd)
	Relief Valve Installation • Relief System Piping Design • Knockout Drums
1420 - 1430	Recap
1430	Lunch & End of Day Two

Tuesday, 10th of December 2024 Day 3

0730 - 0930	Flare Systems Types of Flare Systems • Thermal Radiation • Smokeless Operation • Pilots and Ignition
0930 - 0945	Break
0945 - 1115	Flare Systems (cont'd) Seals • Location and Regulations • Special Relief System Considerations • Low Temperature Flaring
1115 – 1230	Applicable Codes, Standards & Recommended Practices ASME Codes ◆ ANSI Codes ◆ API Publications
1230 - 1245	Break
1245 – 1420	Applicable Codes, Standards & Recommended Practices (cont'd) NFPA Publications ● OSHA Publications ● CGA (Compressed Gas Association) Publications
1420 – 1430	Recap
1430	Lunch & End of Day Three

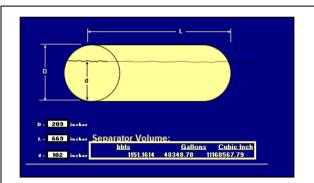
Wednesday, 11th of December 2024 Day 4

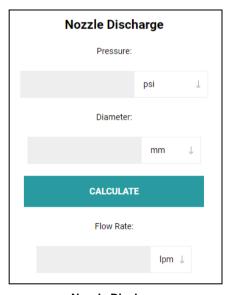
	1.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
	Product Storage & Tanks		
0730 - 0930	Storage Classification • Working Pressures • Types of Storage • Materials of		
0750 0550	Construction • Protective Coatings • Insulation • Appurtenances • Site		
	Preparation and Installation • Cathodic Protection		
0930 - 0945	Break		
	Product Recovery		
0945 - 1100	<i>Product Losses</i> ● <i>Vapor Recovery Systems</i> ● <i>Separators and Filters</i> ● <i>Fired</i>		
	Equipment • Hot Oil System		

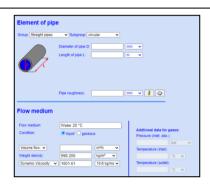
1100 – 1230	Waste Heat Recovery Heat Exchangers Overview ● Heat Balances ● Shell and Tube Exchangers ● Fouling Resistances ● Film Resistances ● Performance Evaluation with Sensible Heat Transfer ● Condensers		
1230 - 1245	Break		
1245 – 1420	Waste Heat Recovery Reboilers and Vaporizers • Selection of Exchanger Components • Nomenclature • Shell Size and Tube Count Estimation • Operating Characteristics • Inlet Gas Exchanger • Hairpin Heat Exchangers		
1420 - 1430	Recap		
1430	Lunch & End of Day Four		

Thursday, 12th of December 2024 Day 5

0730 - 0930	Operation, Maintenance & Troubleshooting
0930 - 0945	Break
0945 - 1100	Operation, Maintenance & Troubleshooting (cont'd)
1100 - 1230	Operation, Maintenance & Troubleshooting (cont'd)
1230 – 1245	Break
1245 - 1345	Operation, Maintenance & Troubleshooting (cont'd)
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

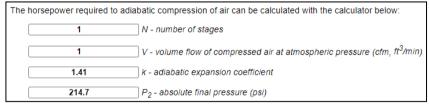





Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using various online system calculator.

Tank Volume Calculator



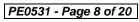
Pressure Drop Online-Calculator

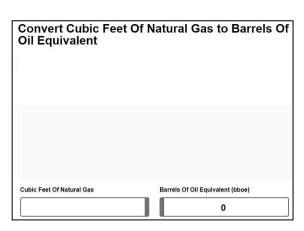
Nozzle Discharge

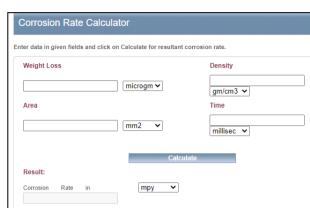
Nozzle Calculator

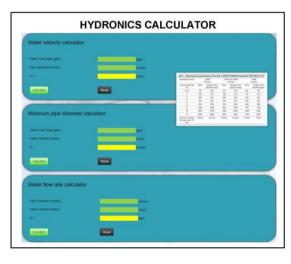
Horsepower Calculator

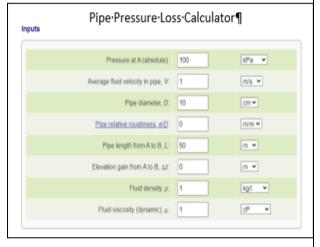
Water Flow Rate through an Orifice Calculator



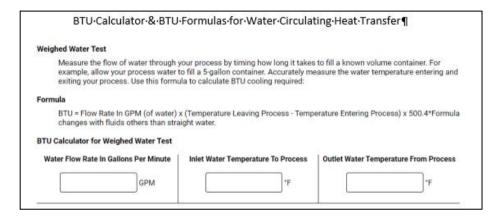








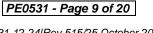
Cubic Feet Calculator

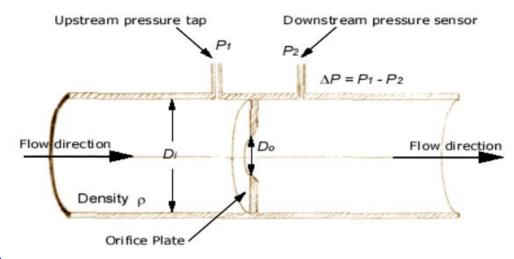


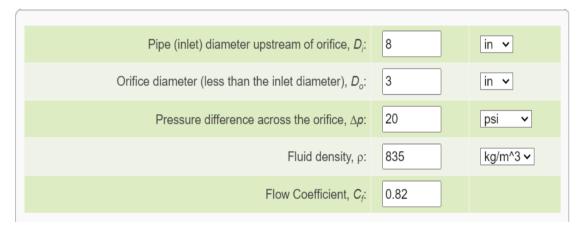
Hydronics Calculator

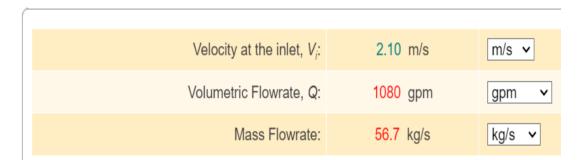
Pipe Pressure Loss Calculator

BTU Calculator





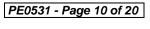


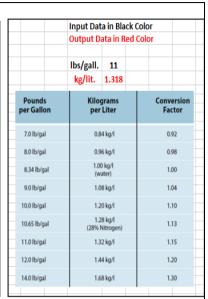


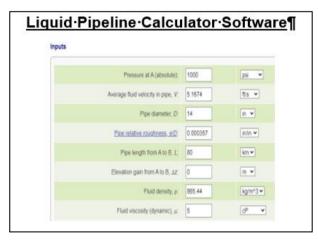
Inputs

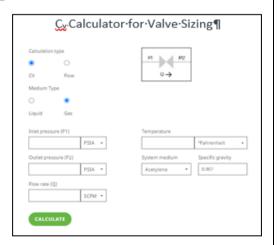
Answers

Flow Rate through an Orifice or Valve Calculator



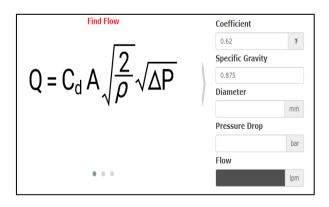


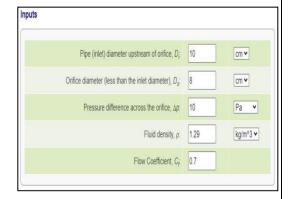

Net Positive Suction Head Calculator - In terms of pressure and head



Net Positive Suction Head Calculator

Net Positive Suction Head Calculator


PPG to KG Calculator

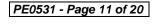


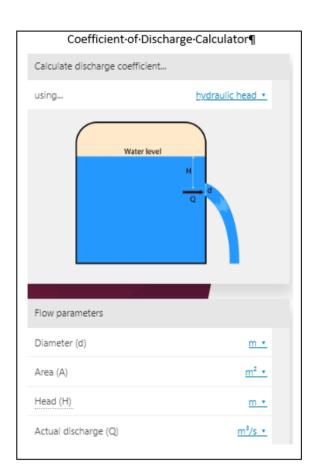
Liquid Pipeline Calculator

Cv Calculator

Find Flow Calculator

Flowrate Calculator

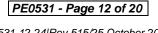


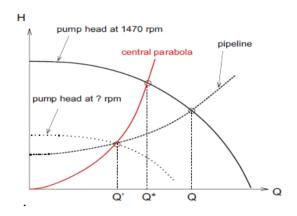


Coefficient Discharge Calculator

Convert horsepower hour to gallon [U.S.] of diesel oil			
	horsepower hour		
	gallon [U.S.] of diesel oil		
Convert			

Horsepower Hour Calculator





Liquid Pumping Program			
Input Data			
API	28		
c.P.	5		
1000 bbl/d	3.3		
Length, km	2.4384		
I.D., in.	2.800		
Rough. (E), in.	0.005		
Difference in elev., m	50		
Destination press., psi	60		
Pump Suc. psi	80		
Overall Pump Eff., %	65		
Motor Eff., %	90		
Motor Loading %	80		

Output Results	
Flow Velocity, ft/s	5.0154
Erosion Velocity, ft/s	13.440
E/I.D.	0.001786
sp.gr.	0.8871
Re	19290.3
F	0.02987
Hf, psi	153.67
Hf, m water	108.17
Total Pump Dich. psi	276.68
TDP, psi	196.68
Hydr. Power, HP	16.99
Hydr. Power, Kw	12.67
Shaft Power, HP	18.88
Shaft Power, Kw	14.083
Nama Plate Motor HP	23.60
Nama Plate Motor Kw	17.60

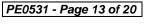
A pump running at 1470[rpm] with $H_{pump} = 45 - 2781Q^2$ head delivers water into a pipeline with $H_{pipe} =$ $20 + 1125Q^2$. Calculate the required revolution number for the reduced flow rate $Q' = 0.05[m^3/s]$.

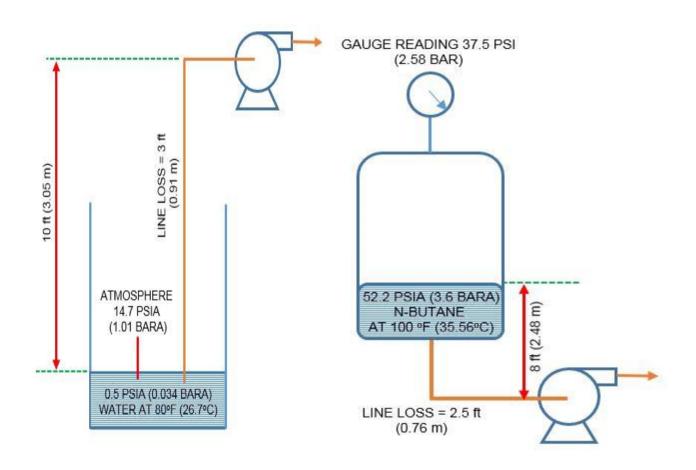
Solution:

- The actual working point is given by the solution of $H_{pump} = H_{pipe}$, which gives $Q = 0.08[m^3/s]$ and H = 27.2[m].
- Affinity states that while varying the revolutionary speed, H/n^2 and Q/n remain constant. Thus, also H/Q^2 remains constant, let's denote this constant by a. So, while varying the revolutionary speed, the working point moves along the central parabola (see figure), given by $H_{ap} = a Q^2$.

However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we know that $H' = 20 + 1125 \times 0.05^2 = 22.81$ [m]. Thus, the parameter of the affine parabola is $a = H'/Q'^2$

 Q^* is given by the intersection of the affine parabola and the original pump characteristic: $H_{ap}(Q^*)$ $H_{pump}(Q^*)$, which gives $Q^* = 0.06148[m^3/s]$ with $H^* = 34.5[m]$.





Now we can employ affinity between Q^* and Q':

$$n' = n^* \frac{Q'}{Q^*} = 1470 \times \frac{0.05}{0.06148} = 1195.5[rpm]$$

and just for checking the calculation

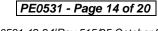
$$H' = H^* \left(\frac{n'}{n^*}\right)^2 = 34.5 \times \frac{1195.5^2}{1470^2} = 22.81[m].$$

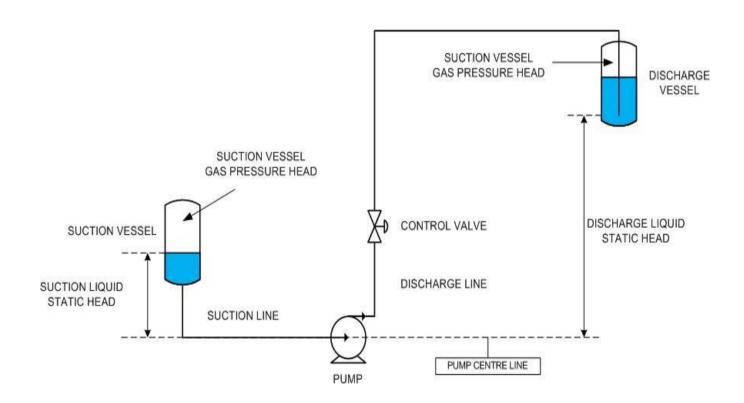
NPSHA of pump – suction lift

NPSHA of pump – at boiling point SG of n-butane at 100 deg F = 0.56

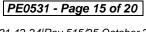
NPSHA = Hatmp.+/-Hs - Hf - Hvap.

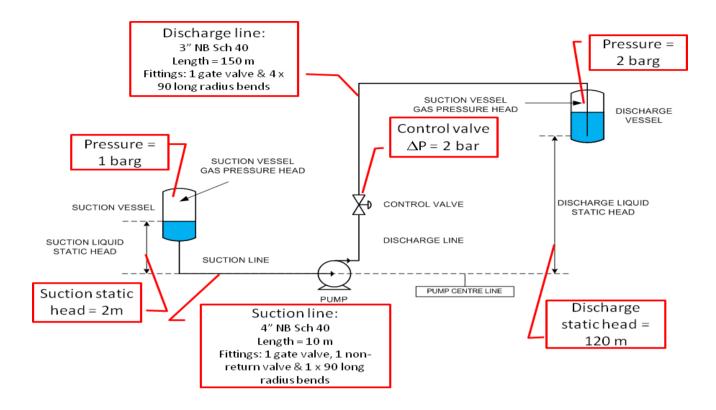
https://engineeringunits.com/net-positive-suction-head-calculator/?utm_content=cmp-true http://www.pressure-drop.com/Online-Calculator/index.html





NPSH Calculations		Output Results	
Input Data		Flow Velocity, ft/s	2.6620
API	36	E/I.D.	0.001671
c.P.	3	sp.gr.	0.8448
Vapor pressure, psi	10		17363.9
Atmp. Pressure, psi	14.7	Re	
Height above pump, ft	20	F	0.0302
1000 bbl/d	2.0	Hf, psi	0.048
Length, km	0.003	Hf, ft water	0.111
I.D., in.	2.992	NPSHA, ft oil	32.72
Rough. (E), in.	0.005	NPSHA, ft water	27.64





Calculator

PUMP DETAILS

Pump tag number

Suction vessel tag number

Discharge vessel tag number

Barometric pressure

NPSH available margin

Pump efficiency

P-001

V-001

V-002

I .013 bara

Margin

O m

70%

FLUID PROPERTIES

 Fluid
 Water

 Phase
 Liquid

 Flowrate
 m
 30000 kg/hr

 Density
 ρ
 998 kg/m3

 Viscosity
 μ
 1 cP

 Vapour pressure
 P_{vap}
 0.023 bara

VESSEL GAS PRESSURES

Suction vessel gas pressure

Psuc_vessel

Discharge vessel gas pressure

Pdis_vessel

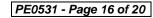
2 barg

STATIC HEADS

Suction static head H_{suc_static_head} 2 m
Discharge static head H_{dis_static_head} 120 m

PIPELINES

		Suction Line	Discharge Line	
Pipe nominal diameter		4	3	inch
Pipe schedule		Sch 40 ~	Sch 40 ~	
Pipe internal diameter	d	102.26	77.92	mm
Pipe length	L	10	150	m
Absolute roughness	e	0.046	0.046	mm



OUTPUTS

Volumetric flow rate 30.060 m3/hr

		Suction Line	Discharge Line	
Relative roughness	e:d	0.00045	0.00059	
Flow area	Α	0.00821	0.00477	m2
Velocity	u	1.02	1.75	m/s
Reynolds No.	Re	103758	136170	1
Flow regime		turbulent	turbulent	
Friction factor	f	0.02011	0.02010	
Pipe velocity head loss	K _{pipe}	1.966	38.695	
Fittings total velocity head loss	K _{fittings}	1.724	2.152	
Frictional pressure loss	ΔP _{friction}	0.02	0.62	bar
Frictional head loss	H _{friction}	0.19	6.38	m

Pump suction pressure	P _{suction}	2.19 bara
Pump suction head	H _{suction}	22.37 m
Pump discharge pressure	Pdischarge	15.39 bara
Pump discharge head	H _{discharge}	157.16 m
Net positive suction pressure available	P _{NPSHA}	2.17 bara
Net positive suction head available	NPSHa	22.13 m
Pump total differential pressure	ΔP_{pump}	13.20 bar
Pump total differential head	H _{pump}	134.79 m
Pump absorbed power	E	15.74 kW

Results of above calculations may be confirmed through either of followinglinks:

https://www.swagelok.com/en/toolbox/cv-calculator

https://experttoolsonline.com/danfoss/orifice_calculator

https://www.efunda.com/formulae/fluids/calc_orifice_flowmeter.cfm

https://www.omnicalculator.com/physics/coefficient-of-discharge

Power Calculations:

https://inventory.powerzone.com/resources/centrifugalpump-powercalculator/%3Aflu%3DGPM%3Apru%3DHEAD%20F T%3Apu%3DHP

http://irrigation.wsu.edu/Content/Calculators/General/Required-Water-Pump-HP.php

Required Compressor Horsepower

https://www.engineeringtoolbox.com/horsepower-compressed-air-d 1363.html



Input Data		Output Results	
T1, F	60		24.044
K	1.35	Compression Ratio	34.014
P1, psi	14.7	Cp, J/kg/K	1107
P2, psi	500	Gas, cfm	36791.50
Gas sp.gr.	1		
No. of Comp. stages	3	Gas, kg/s	21.250
Gas million SCMD	1.5	Theoretical Power, HP	9731.847
Eff. of Gas Comp., %	85	Total Damilead IID	12721 27
Eff. of Driving Motor, %	90	Total Required HP	12721.37

Heater Duty

https://www.advantageengineering.com/fyi/288/advantageFYI288.php

		Output Results	
Input Data		Delta Temp., C	15.6
iliput Data		Mega Watt	0.220
Million DTII/hr	۸ 75	Billion Joule/hr.	0.791
Million BTU/hr.	0.75	gpm	25.0
ADI	10.0	gallon/hr.	1498.4
API	10.0	Lit./min.	94.5
Charific Hoot DTH/lb/F	1.00	m3/hr.	5.7
Specific Heat, BTU/lb/F	1.00	1000 bbl/d	0.856
Delta Tanan C	co	Required Diesel Lit./day	502.90
Delta Temp., F	60	Required Diesel bbl/d	3.16
Hanton Fff 0/	100	Required Gas, 1000 ft3/d	16.364
Heater Eff., % 100		Required crude oil, bbl/d	3.268

https://www.enggcyclopedia.com/2011/09/problem-solving-heat-exchanger-tubeside-pressure-drop-calculation/

Input Data		Output Results	
Mass Flow Rate, kg/hr.	2000.0	cm3/s	562.303
Fluid Density, Kg/m3	988.0	V, cm/s	110.9720
Visc., c.P.	0.53	Re	52544.59
Pipe Diameter (D), in.	1	f	0.0261
Roughness (E), mm	0.045	Total Hf, cm (per single tube)	22.5583
Tube Length, m	3.5	Total Hf, psi (per single tube)	0.3166
No. of tubes	1	Total Hf, bar (per single tube)	0.0218

Heat exchanger tube side pressure drop calculation

Calculate the tube side pressure drop for the following heat exchanger specification,

Process fluid = water

Inlet pressure = 4 barg

Inlet temperature = 50°C

Outlet temperature = 30°C

Tubeside flowrate = 50000 kg/hr

Number of tubes = 25

Tube ID (internal diameter) = 1 inch

Tube length = 3.5 m

Total volumetric flow = 50000 kg/hr ÷ 988.0 kg/m³ = 50.61 m³/hr Volumetric flow in each 1" tube = 50.61 ÷ 25 = 2.02 m³/hr Pressure loss per unit length of the tube is then calculated using EnggCyclopedia's pressure drop calculators for pipes and tubes. This calculator is based on Darcy-Weisbach equation.

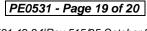
Pressure loss across a single tube ($\Delta P/L$) = 6.17 bar/km

SINGLE PHASEFLOW INPUTS

W – Mass flow capacity	2000	kg/h
$\rho - \underline{Density}$ of fluid	988	kg/m ³
$\mu - \underline{\text{Viscosity}}$ of fluid (either liquid or gas)	0.53	cP
PIPE SPECIFICATIONS		
e – Effective roughness of the pipe	0.045	mm
d – Nominal diameter of the pipe	1	inches
sch - pipe schedule	STD	
Calculate pressure loss	Reset	
RESULTS		
Fluid Velocity	1.110	<u>m/s</u>
Volumetric flow	2.02	\underline{m}^3/hr
Reynold's No.	52557.9	
Pressure loss	6.1715	<u>bar</u> /km

Tube length (L) = 3.5 m

Tubeside pressure drop (ΔP) = 6.17 × 3.5 / 1000 = 0.0216 bar



Another alternative is to directly use EnggCyclopedia's Heat Exchanger Tube side Pressure Drop Calculator. All the inputs given in the sample problem statements are given to the calculator and pressure drop across the tubeside is calculated as output. This calculator uses the same basic steps discussed above and hence the answer also matches with the figure above (0.0216 bar) . The following image is a snapshot of this direct calculation of tubeside pressure drop.

Exchanger tubeside pressure drop

Tubeside inputs		
Total tubeside <u>mass</u> flow	50000	kg/hr
Tubeside <u>Density</u>	988	kg/m^3
Tubeside Viscosity	0.53	cP
Number of tubes	25	
Total tube length (accounting for all tube passes)	3.5	m
Tube nominal diameter	1	inches
Tubeside roughness	0.045	mm
Calculate pressure drop	Reset	
Results		
Tubeside pressure drop	0.0216	bar

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

