

COURSE OVERVIEW FE0113(GA2) API-579 & ASME PCC-2: Repair Practices

Course Title

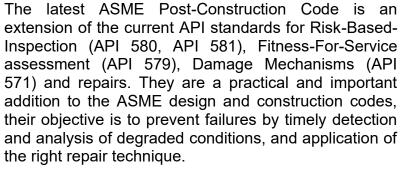
API-579 & ASME PCC-2: Repair Practices

Course Date/Venue

November 02-06, 2025/Liwan Meeting Room, Crowne Plaza Al Khobar, an IHG Hotel, Al Khobar, KSA

Course Reference

FE0113(GA2)


Course Duration/Credits

Four days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive includes various practical sessions and exercises. Theory learnt will be applied using our state-of-theart simulators.

In this highly practical course, participants will learn how to (1) plan inspections, (2) evaluate inspection results and calculate the remaining life of corroded and degraded equipment, and (3) select and implement the right repair by applying the new ASME Post-Construction Codes (PCC).

The course will follow the same outline as the ASME PCC Codes, making the course notes a practical and handy reference to illustrate and explain the various requirements of the new ASME PCC codes. Further, the course will review the recommended practices of API 579 and API 571 and how they can be applied on Fitness-for-Service and damage mechanisms affecting process plant equipment.

This course is design to provide participants with a detailed and up-to-date overview of API-579 FFS and ASME PCC 2 repair practices. It covers the scope and limitations of API 579, fitness-for-service engineering assessment procedure, remaining life assessment and concept of remaining strength factor; the remediation methods including in-service monitoring, assessment techniques and acceptance criteria and the identification and characterization of damage mechanisms; the various methods of FFS assessments and their application equipment/piping; assessing pitting corrosion and proper selection of pitting charts; the ASME PCC-2 standard as well as the applicability and limitations of repair methods covered by ASME PCC-2; the application of welded repairs and mechanical repairs for non-welding repairs; and the NACE standards, material selection and requirements for piping.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on API-579 FFS and ASME PCC-2 repair practices
- Enhance the knowledge and experience on inspection and assessment of piping in service and assess the integrity of the piping and components in current state of damage
- Provide insights into repair practices to enhance the process safety with optimum cost involvement for maintenance and improvement of plant availability
- Discuss the NACE standards and application to increase the knowledge on material requirement and selection for piping to avoid over specification for optimum maintenance cost
- Enhance the knowledge and experience to assess the reported defects and recommend and identify ideal repair options for pressure and piping equipment in line with codes requirement
- Review in-service degradation and damage suffered by pressure vessels and piping including the damage inspection and evaluation of inspection findings
- Recognize the scope and limitations of API 579, fitness-for-service engineering assessment procedure, remaining life assessment and concept of remaining strength factor
- Carryout remediation methods including in-service monitoring, assessment techniques and acceptance criteria and the identification and characterization of damage mechanisms
- Employ various methods of FFS assessments and their application to plant equipment/piping
- Assess pitting corrosion and proper selection of pitting charts
- Discuss ASME PCC-2 standard as well as the applicability and limitations of repair methods covered by ASME PCC-2
- Apply welded repairs and mechanical repairs for non-welding repairs
- Discuss the NACE standards, material selection and requirements for piping

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides a wide understanding and deeper appreciation of fitness-forservice, remaining life assessment and repair of pressure equipment and piping for senior piping and inspection engineers, integrity assessment engineers, operations engineers, maintenance engineers, maintenance supervisors, facility integrity supervisors, corrosion engineers, corrosion specialists, site inspection engineers, inspectors, piping engineers, mechanical engineers, plant managers, plant engineers, project engineers and engineers who are responsible for maintaining the integrity of process plant equipment and piping.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The Internatio
 (IACET - USA)

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Tony Dimitry, PhD, MSc, BSc, is a Senior Corrosion & Metallurgical Engineer with over 30 years of industrial experience. His expertise covers Risk Based Inspection (RBI) Methodologies, Risk Based Inspection (RBI) According to API 580, 581, Risk Based Inspection (RBI) & Failure Mode & Effect Analysis (FMEA), Corrosion Prevention, Cathodic Protection Systems, Corrosion Control, Corrosion Inhibition,

Management in Process Operations, Corrosion Engineering, Corrosion Metallurgical Failure Analysis & Prevention, Fabrication & Repair, Corrosion & Prevention of Failures, Material Selection, Welding Technology, Welding Defects Analysis, Brazing/Soldering, Steel Manufacturing, Facility Integrity, Ladle Furnace Treatment, Ferro-Alloys Production, Tank Farm & Tank Terminal Safety, Integrity Management, API-579: Fitness-for-Service (FFS), ASME PCC-2 Process Plant Equipment, Pressure Vessels, Piping & Storage Facilities, Piping Vibration Analysis & Practical Engineering Solutions, Remaining Life Assessment & Repair of Pressure Equipment & Piping, Pipeline Operations & Maintenance, Gas Transportation Piping Code, Maintenance Management, Reliability Management, Rotating Equipment, Static Equipment, Failure Analysis, FMEA and Preventive & Predictive Maintenance. Currently, he is in charge of the metallurgical failure analysis and the usage of fracture mechanics for determining crack propagation in impellers of turbines.

During his career life, Dr. Dimitry held a significant positions such as the Operations Engineers, Technical Trainer, HSE Contracts Engineer, Boilers Section Engineer, Senior Engineer, Trainee Mechanical Engineer, Corrosion Engineer, Turbines Section Head, Professor, Lecturer/Instructor and Teaching Assistant from various multinational companies like Chloride Silent Power Ltd., Technical University of Crete, National Nuclear Corporation, UMIST Aliveri Power Station and HFO Fired Power Station.

Dr. Dimitry has **PhD**, **Master** and **Bachelor** degrees in **Mechanical Engineering** from the **Victory University of Manchester** and the **University of Newcastle**, **UK** respectively. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an associate member of the American Society of Mechanical Engineers (**ASME**) and Institution of Mechanical Engineers (**IMechE**). He has further delivered various trainings, seminars, courses, workshops and conferences internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 02nd of November 2025

ay I.	Sunday, UZ*** Of November 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction
0830 - 0930	Review In-Service Degradation and Damage Suffered by Pressure Vessels &
	Piping • Damage Inspection & Evaluation of Inspection Findings
0930 - 0945	Break
	API 579 Standard (Fitness for Service)
0945 - 1130	Scope & Limitations of API 579 • Fitness-for-Service Engineering Assessment
	Procedure
1120 1220	API 579 Standard (Fitness for Service) (cont'd)
1130 - 1230	Remaining Life Assessment • Concept of Remaining Strength Factor
1230 - 1245	Break
	Remediation Methods
1245 - 1420	<i>In-Service Monitoring</i> • <i>Assessment Techniques & Acceptance Criteria (Level 1,</i>
	2 & 3 Assessment) • Identification & Characterization of Damage Mechanisms
1420 – 1430	Recap
1430	Lunch & End of Day One
	0730 - 0800 0800 - 0815 0815 - 0830 0830 - 0930 0930 - 0945 0945 - 1130 1130 - 1230 1230 - 1245 1245 - 1420 1420 - 1430

Day 2: Monday, 03rd of November 2025

Day 2:	Monday, U3° of November 2025
0730 - 0930	Methods of FFS Assessments (Level 1) & Their Application to Plant
	Equipment/Piping. Decision-making: "Run, Repair & Replace"
	Concept of Remaining Strength Factor • Concept of FAD • Calculating Safe
	MAWP • Assessment of Existing Equipment for Brittle Fracture
0930 - 0945	Break
	Methods of FFS Assessments (Level 1) & Their Application to Plant
	Equipment/Piping. Decision-making: "Run, Repair and Replace" (cont'd)
0945 - 1130	Assessment of General Metal Loss Thickness Averaging Method Critical Thickness
	Profiles • Concept of COV Acceptance Criteria • Remediation Methods •
	Assessment of Local Metal Loss
	Assessment of Pitting Corrosion, Selection of Pitting Charts
1130 - 1230	Calculation of RSF Calculation of Safe MAWP • Assessment of Hydrogen
	Blisters & Hydrogen Damage - HIC & SOHIC • Determining Dimensions of
	Affected Area • Acceptance Criteria • Assessment of Weld Misalignment & Shell
	Distortions • Assessment of Crack-like Flaws
1230 - 1245	Break
1245 - 1420	Assessment of Pitting Corrosion, Selection of Pitting Charts (cont'd)
	Crack Characterization • Crack Orientation & Crack Depth • Use of Failure
	Assessment Diagrams • Assessment of Cracks in the Weld • Assessment of
	Cracks Outside the Weld • Assessment of Components Operating in the Creep
	Range
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Tuesday, 04th of November 2025

Duy o.	racsady, of or November 2020
0730 – 0930	Assessment of Pitting Corrosion, Selection of Pitting Charts (cont'd) Assessment of Fire Damage • Description of Fire Zones • Fire Zones Which
	Cause No Damage • Fire Zones Which Cause Substantial Damage • Method
	to Determine New MAWP of Equipment
0930 - 0945	Break
0945 - 1130	Assessment of Pitting Corrosion, Selection of Pitting Charts (cont'd) Assessment of Dents, Gouges & Dent-Gouge Combinations • Assessment of Laminations • Introduction to Fatigue Analysis • Relevance of API 579 Standard with Other Codes
1130 – 1230	ASME PCC-2: Repair of Pressure Equipment & Piping Scope, Organization & Intent • Applicability & Limitations of Repair Methods Covered by ASME PCC-2 • Choosing Correct Repair Technique for Given Defects
1230 - 1245	Break
1245 – 1420	ASME PCC-2: Repair of Pressure Equipment & Piping (cont'd) Cost-effective Repairs • Detailed Repair Methods & Inspection Techniques • Inspection of Pressure Vessels, Rating, Repair & Alteration • Remaining Life Calculation of Pressure Vessels
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4: Wednesday, 05th of November 2025

Day 4.	wednesday, 05° Of November 2025
0730 - 0930	ASME PCC-2: Welded Repairs
	Butt-Welded Insert Plates in Pressure Components • Weld Overlay to Repair
	Internal Thinning
0930 - 0945	Break
0945 - 1130	ASME PCC-2: Welded Repairs (cont'd)
	Welded Leak Box Repair • Full Encirclement Steel Reinforcing Sleeves for
	Piping
1130 - 1230	ASME PCC-2: Welded Repairs (cont'd)
	Fillet Welded Patches • Alternatives to Post-Weld Heat Treatment
1230 - 1245	Break
1245 - 1420	ASME PCC-2: Welded Repairs (cont'd)
	In-Service Welding onto Carbon Steel Pressure Components or Pipelines • Weld
	Build-up, Weld Overlay & Clad Restoration
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5: Thursday, 06th of November 2025

	ASME PCC-2: Mechanical Repairs (Non-Welding Repairs)
0730 - 0930	Flange Repair • Mechanical Clamp Repair • Inspection & Repair of Shell & Tube
	Heat Exchangers
0930 - 0945	Break
0945 - 1130	ASME PCC-2: Mechanical Repairs (Non-Welding Repairs) (cont'd)
	Examination & Testing • Pressure & Tightness Testing of Piping & Equipment •
	Pneumatic Testing- Do's & Don'ts
1130 – 1230	ASME PCC-2: Mechanical Repairs (Non-Welding Repairs) (cont'd)
	Non-destructive Examination in Lieu of Pressure Testing for Repairs &
	Alterations • Relevance of ASME PCC-2 Standard with API 510 & API 570
	Codes • Documentation & Records of Repairs
1230 - 1245	Break

1245 - 1345	NACE Standards, Material Selection & Requirements for Piping
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "IntegriWISETM" simulators.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

