

COURSE OVERVIEW PE0865 Gas Compression & Expansion Compressors & Turbines Certification

O CEUS

Course Title

Gas Compression & Expansion: Compressors & **Turbines Certification**

Course Date/Venue

Session 2: January 12-16, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: September 14-18, 2024/Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

Course Reference

PE0865

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of gas compression and expansion. It covers the turbomachinery and fluid basics; the ideal gas law and practical application covering isentropic, polytropic compression, mass and volume capacity; the practical compression laws on discharge temperature and power of compression; the velocities triangle comprising of impulse, reaction and type of blades; and the classifications, types, basic characteristics. applications and standards compressors.

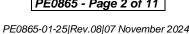
This course will also discuss the theory of operation and applications of centrifugal compressors; the primary centrifugal compressor elements, impeller types, splitter, diffuser and volute design exploration; the applications, theory of operation, design, main components and functional description of axial compressions; and the surge and surge protection, IGV and valves.

During this interactive course, participants will learn the principle of operation and components of dry gas seals; the seal support systems, API 682 reference guide and gas barriers seal technology; the compressors operation and control; the compressors failure mechanisms; the major components and functional description of gas and steam turbines including its operation and control, failure mechanisms, failure modes, maintenance and troubleshooting; and the lube oil system, hydraulic oil system, couplings and bearings.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain a comprehensive knowledge on gas compression and expansion
- Discuss turbomachinery and fluid basics
- Identify the ideal gas law and practical application covering isentropic, polytropic compression, mass and volume capacity
- Apply practical compression laws on discharge temperature and power of compression
- Illustrate velocities triangle comprising of impulse, reaction and type of blades
- Discuss compressors covering classifications, types, basic characteristics, applications and standards
- Explain theory of operation and applications of centrifugal compressors
- Recognize the primary centrifugal compressor elements, impeller types, splitter, diffuser and volute design exploration
- Identify the applications, theory of operation, design, main components and functional description of axial compressors
- Discuss surge and surge protection, IGV and valves
- Recognize the principle of operation and components of dry gas seals
- Determine seal support systems, API 682 reference guide and gas barriers seal technology
- Employ compressors operation and control as well as compressors failure mechanisms
- Identify gas turbines major components and their functional description
- Carryout gas turbines operation and control, gas turbines failure mechanisms, failure modes, maintenance and troubleshooting
- Discuss steam turbines major components and their functional description
- Illustrate steam turbines operation and control and steam turbines failure mechanisms
- Recognize lube oil system, hydraulic oil system, couplings and bearings



Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of gas compression for process engineers and mechanical engineers working in the petroleum and petrochemical industry, plant supervisors, senior gas engineers, gas compressor engineers and designers, compression equipment sales engineers and fresh graduate engineers with petroleum and industrial engineering degrees. The course is a must for all technical staff working in gas plant and natural gas feedstock function.

Training Methodology

This interactive training course includes the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Workshops & Work Presentations

30% Case Studies & Practical Exercises

20% Software, Simulators & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day
Al Khobar	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

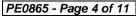
Course Certificate(s)

(1) Internationally recognized Wall Competency Certificates and Plastic Wallet Card Certificates will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

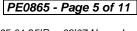
Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-



(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.



Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis (Athanasios Karalis), PEng, MSc, MBA, BSc, is a Senior Process & Mechanical Engineer with 45 years of extensive industrial experience within the Oil & Gas, Refinery and Petrochemical industries. His wide expertise includes Control Valve Maintenance & Testing, Advanced Operational Skills, Process Equipment Design & Troubleshooting, Process Plant Optimization & Continuous Improvement, Production Process Optimization, Operations Planning Optimization, Process Equipment Design,

Process Plant Performance & Efficiency, Process Integration & Optimization, Root Cause Analysis (RCA) Methods, Root Cause Analysis, Process Equipment & Piping System, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Rotating Equipment for Process Industry, Rotating Machinery Best Practices, Centrifugal Pumps Operation, Positive Displacement Pumps Repair, Pump Maintenance & Troubleshooting, Pressure Vessels, Heat Exchanger Maintenance & Repair, Heat Exchanger Inspection & Troubleshooting, Fin-fan Coolers, Fundamentals of Engineering Drawings, Codes & Standards, P&ID Reading Interpretation & Developing, Boiler Design, Boiler Inspection & Maintenance, Boiler Operation & Control, Boiler Troubleshooting & Inspection, Boiler Instrumentation & Control, Steam Boiler Maintenance, Boiler & Steam Generation System, Boiler Failure Analysis & Prevention, Boiler Burner Management, Boiler Water Treatment Technology, Machinery Failure Analysis, Preventive & Predictive Maintenance, Condition Monitoring, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Reliability Centred Maintenance (RCM), Risk Base Inspection (RBI), Metallurgical Failure Analysis, Corrosion Failure Analysis. Steam Generation. Steam Turbines. Power Generator Plants. Gas Turbines. Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Transfer, Coolers, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearings, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager, Maintenance Manager, Engineering Manager, Technical Consultant & Trainer, Head of Capital Projects, Refractory Specialist, Construction Superintendent, Maintenance Supervisor, Project Engineer, Maintenance Engineer and Thermal Design Engineer of various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has Master's and Bachelor's degree in Mechanical Engineering with Honours from the Purdue University and Southern Illinois University (USA) respectively as well as an MBA from the University of Phoenix (USA). Further, he is a Certified Instructor/Trainer, Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM), a member of the American Society of Heating, Refrigeration and Air-Conditioning Engineers and delivered various trainings, courses, seminars and workshops worldwide.

Course Program

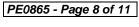
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	Introduction to Turbomachinery & Fluid Basics
0900 - 0930	Ideal Gas Law & Practical Application
0900 - 0930	Isentropic • Polytropic Compression • Mass • Volume Capacity
0930 - 0945	Break
0945 – 1100	Practical Compression Laws
0943 - 1100	Discharge Temperature • Power of Compression
1100 – 1215	Velocities Triangle
1100 - 1213	Impulse • Reaction • Type of Blades
1215 - 1230	Break
	Compressors Overview
1230 - 1330	Introduction to Compressors • Classifications, Types, Basic Characteristics of
	Compressor Types, Applications & Standards • Illustrating Video
	Centrifugal Compressors
1330 - 1400	Theory of Operation & Applications • Primary Centrifugal Compressor
1550 - 1400	Elements, Impeller Types, Splitter, Diffuser & Volute Design Exploration •
	Multistage Compressor Design Considerations • Illustrating Video
1400 – 1420	Discussion & Exercises
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 – 0900	Axial Compressors
	Applications & Theory of Operation • Axial Compressors Design, Main
	Components & Functional Description • Surge & Surge Protection, IGV &
	Valves • Illustrating Video
0900 - 0930	Compressors Shaft Seals
	Dry Gas Seals Principle of Operation & Components • Seal Support Systems
0900 - 0930	(Dual Sealing Systems & Flushing Plans) • API 682 Reference Guide • Gas
	Barrier Seal Technology • Illustrating Video
0930 - 0945	Break
0945 - 1100	Compressors Operation & Control
1100 – 1215	Compressors Failure Mechanisms
	Failure Modes • Maintenance • Troubleshooting
1215 - 1230	Break
1230 - 1420	Discussion & Exercises
1420 - 1430	Recap
1430	Lunch & End of Day Two



Day 3

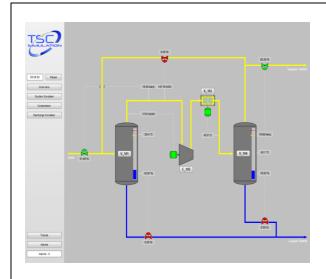
, -	
0730 – 0900	Gas Turbines Overview
	Introduction to Gas Turbines • Cycles • Classifications • Applications •
	Factors Affecting GTs Performance • Key Terms • Designation • Gas Turbines
	Standards • Illustrating Video
0900 – 0930	Gas Turbines Major Components & their Functional Description
	Combustors Design, Arrangement, Main Components, Functional Description
	& Combustion Process • Power Turbines Design, Components, Function
	Description & Operation
0930 - 0945	Break
0945 - 1100	Gas Turbines Operation & Control
1100 – 1215	Gas Turbines Failure Mechanisms, Failure Modes, Maintenance &
	Troubleshooting
1215 - 1230	Break
1230 - 1420	Discussion & Exercises
1420 - 1430	Recap
1430	Lunch & End of Day Three

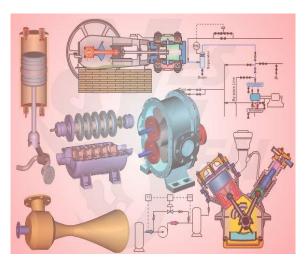
Day 4

0730 - 0930	Steam Turbines Overview
0930 - 0945	Break
0945 – 1100	Steam Turbines Major Components & their Functional Description
1100 – 1215	Steam Turbines Operation & Control
1215 - 1230	Break
1230 – 1420	Steam Turbines Failure Mechanisms
	Failure Modes • Maintenance • Troubleshooting
1420 - 1430	Recap
1430	Lunch & End of Day Four

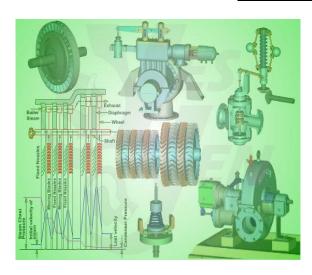
Day 5

0730 - 0930	Lube Oil System
	Functional Description • Components • Failure Modes • Lube Oil Properties •
	Testing • Sampling
0930 - 0945	Break
0945 – 1100	Hydraulic Oil System
0943 - 1100	Functional Description • Components
	Couplings
1100 - 1215	Functional Description • Components • Failure Mechanisms • Failure Modes
	Maintenance Troubleshooting
1215 - 1230	Break
	Bearings
1230 - 1300	Hydrodynamic Bearing • Design • Theory of Operation • Failure Mechanisms
	Failure Modes Maintenance Troubleshooting
1300 - 1315	Course Conclusion
1315 - 1415	COMPETENCY EXAM
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course





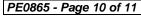
Simulator (Hands-on Practical Sessions)

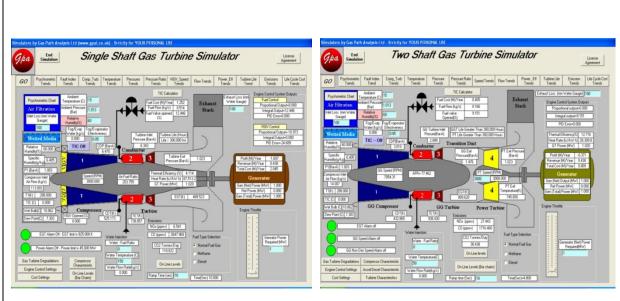

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulators "SIM 3300 Centrifugal Compressor", "CBT on Compressors" and "Steam Turbines & Governing System CBT" "Single Shaft Gas Turbine Simulator", "Two Shaft Gas Turbine Simulator" and "ASPEN HYSYS" simulator.

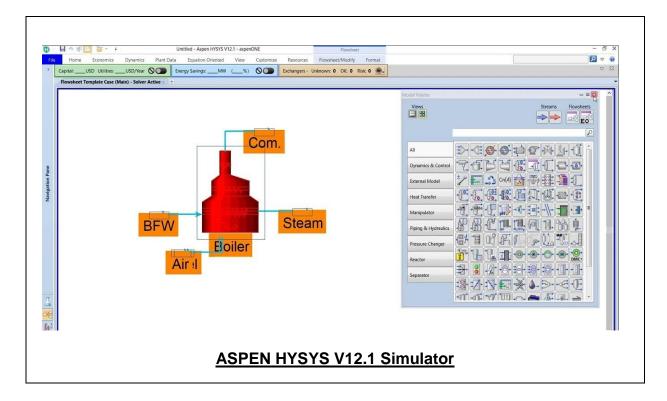
SIM 3300 Centrifugal Compressor Simulator

CBT on Compressors

Steam Turbines & Governing System CBT







Single Shaft Gas Turbine Simulator

Two Shaft Gas Turbine Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

