

COURSE OVERVIEW DE0009(KP4) Integration of Core & Log Data

Course Title

Integration of Core & Log Data

Course Date/Venue

Session 1: February 01-05, 2026/Meeting Plus 9, City Centre Rotana, Doha Qatar

Session 2: August 30-September 03, 2026/Meeting Plus 9, City Centre Rotana, Doha Qatar

H-STK©
INCLUDED

Course Reference

DE0009(KP4)

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

Reservoir evaluation requires good understanding of rock properties (core and log), logging tools and their measurements and well test and pressure data. Understanding these basics and integrating them in a meaningful way shall help to solve complex reservoir and production issues.

This course is designed to provide delegates with a detailed and up-to-date knowledge on core and log integration. It covers the RCAL and SCAL lab core measurements; the reservoir properties from RCAL and its porosity, permeability, grain density and saturation; the reservoir characteristics from SCAL and its relative permeability, capillary pressure, wettability and electrical properties; and the reservoir properties from log interpretation and its comparison with core requirements.

During this interactive course, participants will learn the core-log correlation and estimation of permeability from log and core; the rock types and facies from core description and logs; the electrofacies and poro-perm relation as well as well testing and integration with petrophysical analysis; the reservoir modeling and upscaling, uncertainties and integrating the core; and the logging and testing data for reservoir modeling.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on integration of core and log data
- Differentiate RCAL and SCAL lab core measurements
- Discuss reservoir properties from RCAL and its porosity, permeability, grain density and saturation as well as reservoir characteristics from SCAL and its relative permeability, capillary pressure, wettability and electrical properties
- Determine reservoir properties from log interpretation and compare it with core requirements
- Explain reservoir properties from log interpretation including its lithology, porosity, water saturation, cut-offs, net to gross ratio, averaging porosity and saturation
- Recognize core-log correlation and estimate permeability from log and core
- Define rock types and identify facies from core description and logs
- Determine ectrofacies and derive poro-perm relation as well as analyze well test and integrate with petrophysical analysis
- Employ reservoir modeling and upscaling, identify uncertainties and integrate the core
- Log and test data for reservoir modeling

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of integration of core and log data for senior engineers, reservoir engineers, exploration and development geologists, core and log analysts, geophysicists, drilling and completion engineers.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- [British Accreditation Council \(BAC\)](#)
Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.
- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Konstantin Zorbalas (Konstantinos Zorbalas), MSc, BSc, is a **Senior Petroleum Engineer & Well Completions Specialist** with 30 years of offshore and onshore experience in the Oil & Gas, Refinery & Petroleum industries. His wide expertise includes **OIP Estimation & Range of Uncertainty, Waterflood Management, Water Flooding, Water Flooding & Reservoir Sourcing Issues, Water Flooding, Reservoir Souring & Water Breakthrough, Well & Reservoir Management and Monitoring, Fishing Operations, Drilling & Work-Over Operations, Workover Best Practices, Well Testing, Completion Design & Operation, Well Stimulation and Workover, Well Stimulation & Workover Planning, Well Completion, Servicing & Work-Over Operations, Completions & Workover, HSE in Work-Over & Drilling Operations, Well Testing Completion & Workover, Basic Drilling, Completion & Workover Operations, Advanced Drilling, Completion & Workovers Fluids, Cementing Integrity Evaluation, Cementing Design, Cement Integrity Assurance & Evaluation, Basic Cementing (Operations) & Basic Acidizing, Advanced Cementing Technology, Casing & Cementing, Advanced Cementing & Stimulation, Artificial Lift Systems, New Technology in Artificial Lift Systems, Artificial Lift Methods, Crude Oil Artificial Lift Operations, Artificial Lift Systems, Artificial Lift & Challenges, Artificial Lift Systems & Optimization Technology, Production Optimization with Artificial Lift System, Well Integrity & Artificial Lift, Formation Damage & Flow Assurance Issues, Formation Damage Evaluation, Prevention, Remediation & Control, Formation Damage (Causes, Prevention & Remediation), Well Completion Design & Operations, Crude Oil Market, Oil Reserves, Global Oil Supply & Demand, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (Revenue and Profitability), Oil & Gas Exploration and Methods, Oil & Gas Extraction, Oil Production & Refining, Technology Usage in Industrial Security; Oil & Gas Economics Modelling Evaluation Decision Making & Risk Analysis, Economic Evaluation & Global Profitability Criteria, Petroleum Economics, Fluid Properties & Phase Behaviour (PVT), Workovers & Completions, Acidizing Application in Sandstone & Carbonate, Well Testing Analysis, Reserves Evaluation, Reservoir Fluid Properties, Reservoir Monitoring, Heavy Oil Technology, Applied Water Technology, X-mas Tree & Wellhead Operations & Testing, Artificial Lift Systems (Gas Lift, ESP, and Rod Pumping), Well Cementing, Well Completion Design, Slickline Operations, Cased Hole Logging and Production Logging. Further, he is actively involved in Project Management with special emphasis in production technology and field optimization, performing conceptual studies, economic analysis with risk assessment and field development planning. He is currently the Senior Petroleum Engineer & Consultant of Abu Dhabi National Oil Company (ADNOC) Group of companies wherein he is involved in the mega-mature fields in the Arabian Gulf, predominantly carbonate reservoirs; designing the acid stimulation treatments with post-drilling rigless operations; utilizing CT with tractors and DTS systems; and he is responsible for gas production and preparing for reservoir engineering and simulation studies, well testing activities, field and reservoir monitoring, production logging and optimization and well completion design.**

During his career life, Mr. Zorbalas worked as a **Senior Production Engineer, Well Completion Specialist, Production Manager, Project Manager, Technical Manager, Trainer, Technical Supervisor & Contracts Manager, Production Engineer, Production Supervisor, Production Technologist, Technical Specialist, Business Development Analyst, Field Production Engineer and Field Engineer**. He worked for many world-class oil/gas companies such as ZADCO, ADMA-OPCO, Oilfield International Ltd, Burlington Resources (later acquired by Conoco Phillips), MOBIL E&P, Saudi Aramco, Pluspetrol E&P SA, Wintershall, Taylor Energy, Schlumberger, Rowan Drilling and Yukos EP where he was in-charge of the **design and technical analysis** of a gas plant with capacity **1.8 billion m3/yr gas**. His achievements include **boosting oil production 17.2% per year** since 1999 using **ESP and Gas Lift systems**.

Mr. Zorbalas has **Master's and Bachelor's** degrees in **Petroleum Engineering** from the **Mississippi State University, USA**. Further, he is an **SPE Certified Petroleum Engineer, Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)**, an active member of the Society of Petroleum Engineers (**SPE**) and has numerous scientific and technical publications and delivered innumerable training courses, seminars and workshops worldwide.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	Lab Core Measurement RCAL • SCAL
0930 – 0945	<i>Break</i>
0945 – 1100	Reservoir Rock Properties from RCAL Porosity • Permeability
1100 – 1230	Reservoir Rock Properties from RCAL (cont'd) Grain Density • Saturation
1230 – 1245	<i>Break</i>
1245 – 1420	Reservoir Rock Properties from SCAL Relative Permeability • Capillary Pressure
1420 - 1430	Recap
1430	<i>Lunch & End of Day One</i>

Day 2

0730 – 0930	Reservoir Rock Properties from SCAL (cont'd) Wettability • Electrical Properties
0930 – 0945	<i>Break</i>
0945 – 1100	Reservoir Properties from Log Interpretation Lithology • Porosity • Water Saturation • Cut-Offs
1100 – 1230	Reservoir Properties from Log Interpretation (cont'd) Net to Gross Ratio • Averaging Porosity • Saturation
1230 – 1245	<i>Break</i>
1245 – 1420	Core-Log Correlation
1420 - 1430	Recap
1430	<i>Lunch & End of Day Two</i>

Day 3

0730 – 0930	Permeability Estimation from Log & Core
0930 – 0945	<i>Break</i>
0945 – 1100	Rock Typing
1100 – 1230	Facies Identification from Core Description & Logs
1230 – 1245	<i>Break</i>
1245 – 1420	Electrofacies & Derive Poro-Perm Relation
1420 - 1430	Recap
1430	<i>Lunch & End of Day Three</i>

Day 4

0730 – 0930	Well Test Analysis
0930 – 0945	<i>Break</i>
0945 – 1100	Integration with Petrophysical Analysis
1100 – 1230	Reservoir Modeling
1230 – 1245	<i>Break</i>
1245 – 1420	Upscaling
1420 – 1430	Recap
1430	<i>Lunch & End of Day Four</i>

Day 5

0730 – 0930	Uncertainties
0930 – 0945	<i>Break</i>
0945 – 1100	Integrating Core
1100 – 1230	Log & Test Data for Reservoir Modeling
1230 – 1245	<i>Break</i>
1245 – 1345	Log & Test Data for Reservoir Modeling (cont'd)
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	<i>Lunch & End of Course</i>

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org