

COURSE OVERVIEW EE1140 Power Network Performance Analysis

Course Title

Power Network Performance Analysis

Course Date/Venue

July 21-25, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

> O CEU 30 PDHs)

AWA

Course Reference EE1140

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Power Network Performance Analysis. It covers the components of a power network, types of electrical loads, role of utilities in power network operation and basic performance parameters; the power flow in transmission networks, voltage profiles and control, frequency control and stability and power losses in the network; the power quality, load flow analysis, short-circuit analysis and contingency and the reliability indices analysis; and performance metrics, system stability studies and performance benchmarking in utilities.

During this interactive course, participants will learn the dynamic simulation of power systems, harmonics and power quality analysis, voltage stability assessment, energy loss analysis and network reconfiguration and optimization; the data acquisition and SCADA systems including online monitoring and diagnostics; the load forecasting techniques. asset performance management (APM), condition-based maintenance and outage and incident analysis; the GIS and digital twin for network performance, smart grids and digitalization and integration of renewable energy; and the resilience and cybersecurity, regulatory and compliance performance and future trends in performance analysis.

EE1140- Page 1 of 10

EE1140-07-25/Rev.00|19 May 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on power network performance analysis
- Identify the components of a power network, types of electrical loads, role of utilities in power network operation and basic performance parameters
- Recognize power flow in transmission networks, voltage profiles and control, frequency control and stability and power losses in the network
- Carryout power quality, load flow analysis, short-circuit analysis and contingency analysis
- Discuss reliability indices and performance metrics, system stability studies and performance benchmarking in utilities
- Determine dynamic simulation of power systems and apply harmonics and power quality analysis, voltage stability assessment, energy loss analysis and network reconfiguration and optimization
- Recognize data acquisition and SCADA systems including online monitoring and diagnostics
- Employ load forecasting techniques, asset performance management (APM), condition-based maintenance and outage and incident analysis
- Identify GIS and digital twin for network performance, smart grids and digitalization and integration of renewable energy
- Discuss resilience and cybersecurity, regulatory and compliance performance and future trends in performance analysis

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of power network performance analysis for power system engineers, utility company planners and operators, energy consultants and analysts, SCADA and control room technicians, industrial electrical engineers, regulatory and compliance professionals and other technical staff.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

EE1140- Page 2 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

*** * BAC

British Accreditation Council (BAC)

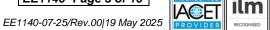
Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.


Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE1140- Page 3 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Herman Eksten, PE, PgDiP, is a Senior Electrical Engineer with over 30 years of extensive experience Oil, Gas, Petrochemical, Refinery & Power industries and Water & Utilities specializing in Electrical Safety, Certified HV Electrical Safety, Low Voltage Electrical Safety, Electrical Circuits: Series and Parallel Connection, Electrical Faults & Protective Devices, **Renewable** Energy Integration, Smart Grid & Renewable Integration, Renewable **Energy** Storage Systems, **Renewable Energy** Economics & Finance,

Risk Control Methods, LOTO - Breakers Operation in Electricity Substation, LOTO Principles and Procedures, Arc Flash Risk Assessment, Safety in Power Electronic Equipment & Lasers, Circuit Breakers & Switchgears, Switchgear Assets Management, Circuit Breakers Control Circuits, Substation Maintenance Techniques, High Voltage Operation, Electrical Protection, Overhead Lines & Substation, Power Supply, High Voltage Substation, Electrical Protection Design, Earthing & Lightning Protection Design, Underground Equipment, Distribution Network Maintenance & Construction, Transformers Operation & Maintenance, Electric Power System, Power Plant Management, Substation Commissioning & Troubleshooting, Cable Splicing & Termination, Electrical Installation & Switchgear Power Generation Operation & Control, Maintenance. Life Assessment, Structured Cabling, Electric Power System, Power System Stability, Power System Planning & Economics, Power Flow Analysis, Combined Cycle Power Plant, UPS & Battery System, Variable Speed Drives, and HV Motors & Transformers. He is currently the Lead Electrical Engineer of SNC-LAVALIN wherein he is responsible for basic designs and successful implementation of electrical engineering to plant overhead lines and substations.

During his career life, Mr. Eksten held various positions such as the Lead Electrical Engineer, Operations Manager, Project Engineer, Technical Specialist, Customer Executive, District Manager, Electrical Protection Specialist, High-Voltage Operator and Apprentice Electrician for FOX Consulting, UHDE (ThyssenKrupp Engineering), TWP Projects/Consulting (EPMC-Mining), ISKHUS Power, Rural Maintenance (PTY) Energia de Mocambique Lda., Vigeo (PTY) Ltd and ESKOM.

Mr. Eksten is a **Registered Professional Engineering Technologist** and has a Postgraduate Diploma in Management Development Programme and a National Higher Diploma (NHD) in Electrical Power Engineering. Further, he is a Certified Instructor/Trainer, a Senior member of the South African Institute Electrical Engineers (SAIEE) and holds a Certificate of Registration Membership Scheme from the Engineering Council of South Africa (ESCA). He has further delivered numerous trainings, courses, seminars, workshops and conferences internationally.

EE1140- Page 4 of 10

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	<i>Monday,</i> 21 st of July 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Power Networks
0830 - 0930	Components of a Power Network (Generation, Transmission, Distribution) •
0850 - 0950	Types of Electrical Loads • Role of Utilities in Power Network Operation •
	Basic Performance Parameters
0930 - 0945	Break
	Power Flow in Transmission Networks
0945 - 1030	<i>Real & Reactive Power Concepts • Single-Line Diagram Interpretation • Power</i>
	Flow Direction & Balancing • Load versus Generation Demand Analysis
	Voltage Profiles & Control
1030 - 1130	<i>Voltage Drop & Regulation • Reactive Power Compensation • Tap Changers &</i>
	Shunt Capacitors • Impact of Poor Voltage Profile on Performance
	Frequency Control & Stability
1130 – 1215	Frequency Variations & Impact on Equipment • Primary & Secondary
1150 - 1215	Frequency Control • Role of Governors & AGC (Automatic Generation
	Control) • Frequency Response Metrics
1215 - 1230	Break
	Power Losses in the Network
1230 - 1330	<i>Types of Losses (Technical, Non-Technical)</i> • <i>Loss Measurement & Monitoring</i>
	Impact of Losses on Performance Methods to Reduce Losses
	Power Quality Overview
1330 - 1420	Definition & Significance of Power Quality • Power Quality Indices (THD,
	Flicker, Unbalance) • Harmonics Basics • Power Quality Issues & Mitigation
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today & Advise Them of the Topics to be Discussed</i>
1 1 2 0	Tomorrow
1430	Lunch & End of Day One

EE1140- Page 5 of 10

Day 2:	Tuesday, 22 nd of July 2025
	Load Flow Analysis
0730 - 0830	Purpose & Importance • Types of Load Flow Methods (Gauss-Seidel, Newton-
	Raphson) • Input Data Requirements • Interpretation of Results
	Short-Circuit Analysis
0830 - 0930	<i>Types of Faults (LG, LL, LLG, LLLG) • Symmetrical Components • Impact on</i>
	Equipment & System • Fault Current Calculation Techniques
0930 - 0945	Break
	Contingency Analysis
0945 - 1100	N-1 & N-2 Security Assessments • Outage Simulation Techniques •
	Preventive versus Corrective Actions • Ranking of Contingencies
	Reliability Indices & Performance Metrics
1100 – 1215	SAIDI, SAIFI, CAIDI, ENS • MTBF & MTTR • Network Availability &
	Dependability • KPI Benchmarking & Target Setting
1215 – 1230	Break
	System Stability Studies
1230 - 1330	Transient versus Steady-State Stability • Rotor Angle Stability • Voltage &
	Frequency Stability • Damping Techniques & FACTS
1330 - 1420	Performance Benchmarking in Utilities
	National & International Benchmarks • CIGRÉ & IEEE Standards •
	Performance Reporting & Audits • TRANSCO Case Study Comparisons
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3: Wednesday, 23rd of July 2025

Edy 01	11641166443, 26° 61° 641, 2626
	Dynamic Simulation of Power Systems
0730 - 0830	Time-Domain versus Frequency-Domain Simulations • Modeling
	Synchronous Machines & Loads • Tools for Dynamic Simulation (e.g.,
	<i>PowerFactory, PSS</i> ®E) • <i>Simulation Setup & Case Study</i>
0830 - 0930	Harmonics & Power Quality Analysis
	Harmonic Sources & Propagation • Harmonic Filters & Solutions • Impact on
	Transformers, Motors • Power Analyzers & PQ Meters
0930 - 0945	Break
0945 - 1100	Voltage Stability Assessment
	PV & QV Curve Analysis • Load Margin Estimation • Reactive Power
	Planning • Monitoring Tools & Indicators
1100 - 1215	Energy Loss Analysis
	Technical Loss Calculation (I ² R Losses) • Non-Technical Loss Detection •
	Smart Meter Data Analytics • Loss Reduction Strategies
1215 – 1230	Break
1230 - 1330	Network Reconfiguration & Optimization
	Objective of Reconfiguration • Load Balancing Techniques • Switching
	Strategies • Optimization Using AI Techniques

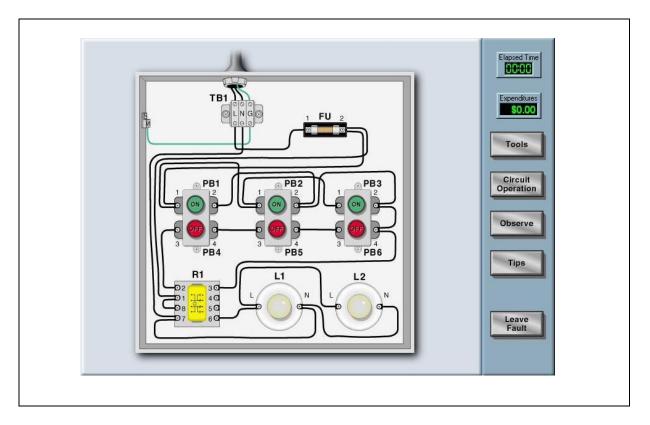
EE1140- Page 6 of 10 EE1140-07-25/Rev.00/19 May 2025

	Data Acquisition & SCADA Systems
1330 - 1420	Role of SCADA in Performance Monitoring • RTUs & IEDs in Substations •
	Data Visualization & Alarms • Integration with EMS/DMS Systems
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4:	Thursday, 24 th of July 2025
0730 - 0830	Online Monitoring & Diagnostics
	Online Sensors & Digital Substations • Transformer & Cable Monitoring •
	Thermal & Vibration Diagnostics • Predictive Maintenance Practices
	Load Forecasting Techniques
0830 - 0930	Short, Medium & Long-Term Forecasting • Statistical & AI-Based Methods •
	Load Profiling • Impact of Renewables on Forecasting
0930 - 0945	Break
	Asset Performance Management (APM)
0945 – 1100	Asset Health Index (AHI) Formulation • Risk-Based Maintenance • Lifecycle
	Costing • Integration with CMMS
	Condition-Based Maintenance
1100 – 1215	CBM versus Time-Based Maintenance • Decision Criteria & Sensors • Fault
	Trend Analysis • Maintenance Scheduling Tools
1215 – 1230	Break
	Outage & Incident Analysis
1230 - 1330	Types & Causes of Outages • Outage Management Systems (OMS) •
	Restoration Time Metrics • Root Cause Analysis (RCA)
1330 - 1420	GIS & Digital Twin for Network Performance
	GIS in Grid Planning & Analysis • Digital Twin for Asset Simulation • Real-
	Time Data Integration • Use Cases for TRANSCO Operations
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	<i>Topics that were Discussed Today & Advise Them of the Topics to be Discussed</i>
	Tomorrow
1430	Lunch & End of Day Four

Day 5:	Friday, 25 th of July 2025
	Smart Grids & Digitalization
0730 – 0830	Characteristics & Components • Smart Meters & IoT Sensors • Real-Time
	Control & Analytics • Communication Protocols
	Integration of Renewable Energy
0830 - 0930	Solar, Wind & Hybrid Integration • Variability & Intermittency Issues • Grid
	Codes & Compliance • Storage Technologies & Performance
0930 - 0945	Break
	Resilience & Cybersecurity
0945 - 1100	Grid Vulnerability Assessment • Resilience Indices & Strategies •
	Cybersecurity Threats & Defenses • Regulatory Compliance & Audits

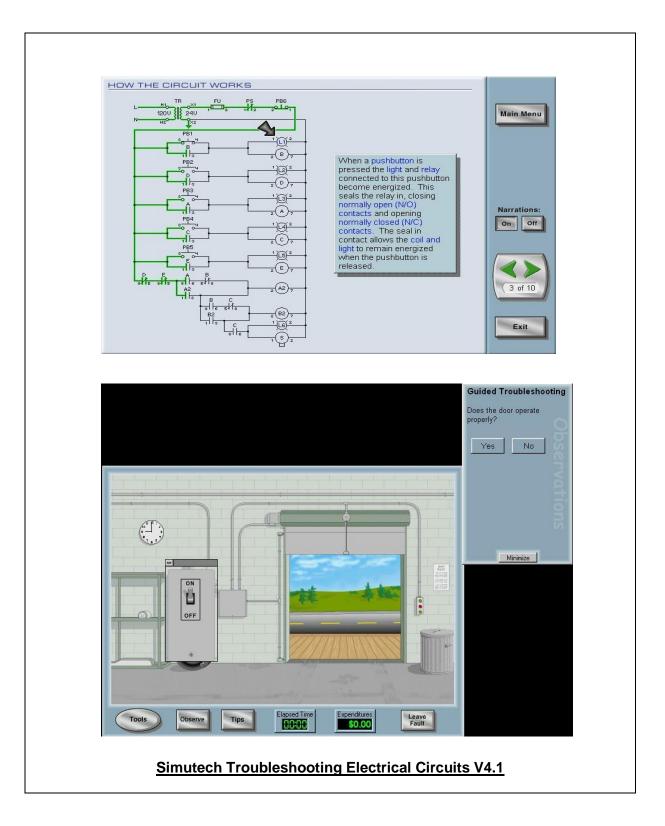
EE1140- Page 7 of 10


ISO 9001:2015 Certifie CM EE1140-07-25/Rev.00/19 May 2025

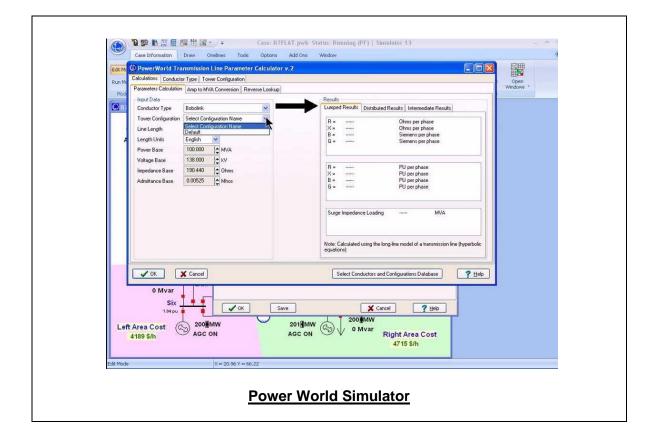
1100 - 1215	Regulatory & Compliance Performance UAE & GCC Grid Codes • Regulatory Reporting Obligations • Incentives & Penalties for Performance • Stakeholder Engagement
1215 – 1230	Break
1230 - 1345	Future Trends in Performance AnalysisAI & ML in Performance Optimization • Digital Substations & PMUs •Blockchain in Energy Transactions • Future Workforce Skills
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about t Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

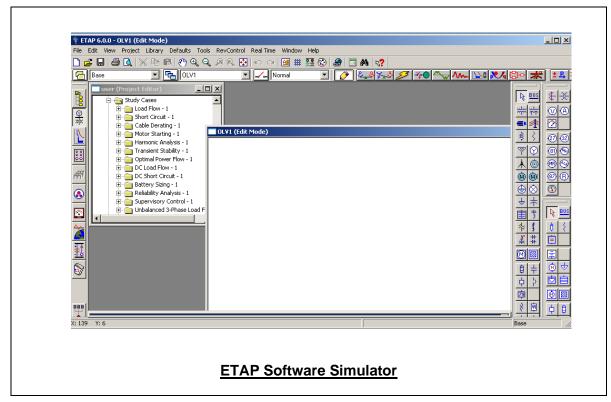
Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Simutech Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".



EE1140- Page 8 of 10





EE1140- Page 9 of 10

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1140- Page 10 of 10

EE1140-07-25/Rev.00|19 May 2025

