

COURSE OVERVIEW DE1091 Stimulation Engineer: Enhanced Recovery & Reservoir Treatment

Course Title

Stimulation Engineer: Enhanced Recovery & Reservoir Treatment

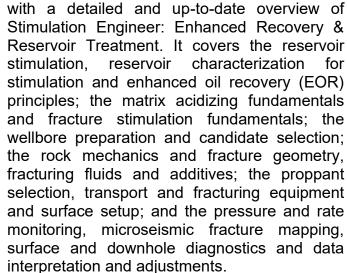
Course Date/Venue

January 26-30, 2026/Tritone Meeting Room, Grand Hotel Palace, Rome, Italy

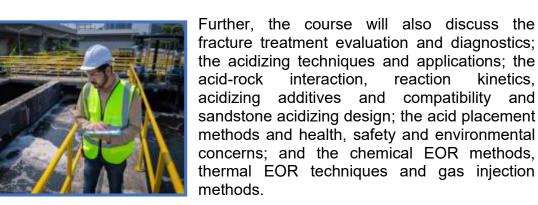
Course Reference

DF1091

Course Duration/Credits


Five days/3.0 CEUs/30 PDHs

Course Description



This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants

kinetics.

During this interactive course, participants will learn the foam stability and injection techniques, in-situ microbial activity and oil recovery; the bacteria selection, nutrient management and compatibility with reservoir conditions; the screening criteria for pilot sites, injection well design and pressure, production, tracer and monitoring; the production logging and surveillance tools; the post-stimulation well testing and analysis and stimulation optimization strategies; and the future trends in reservoir stimulation

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get certified as a "Certified Stimulation Engineer"
- Discuss the reservoir stimulation, reservoir characterization for stimulation and enhanced oil recovery (EOR) principles
- Explain matrix acidizing fundamentals and fracture stimulation fundamentals including wellbore preparation and candidate selection
- Identify rock mechanics and fracture geometry, fracturing fluids and additives, proppant selection and transport and fracturing equipment and surface setup
- Illustrate pressure and rate monitoring, microseismic fracture mapping, surface and downhole diagnostics and data interpretation and adjustments
- Carryout fracture treatment evaluation and diagnostics including acidizing techniques and applications
- Recognize acid-rock interaction, reaction kinetics, acidizing additives and compatibility and sandstone acidizing design
- Apply acid placement methods, health, safety and environmental concerns, chemical EOR methods, thermal EOR techniques and gas injection methods
- Employ foam stability and injection techniques, in-situ microbial activity and oil recovery, bacteria selection and nutrient management and compatibility with reservoir conditions
- Apply screening criteria for pilot sites, injection well design and pressure, production, tracer and monitoring
- Identify production logging and surveillance tools covering PLT, spinner, temperature and noise logs, tracer injection and production profiling, distributed temperature sensing (DTS) and fiber optic monitoring
- Carryout post-stimulation well testing and analysis and stimulation optimization strategies as well as discuss the future trends in reservoir stimulation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of enhanced recovery and reservoir treatment for stimulation engineers and reservoir engineers, production engineers and well intervention engineers, petroleum engineers and field development engineers, fracturing and acidizing supervisors, operations engineers and technical support staff, geoscientists and petrophysicists working on reservoir performance, asset managers and team leaders overseeing production optimization, well services and completion engineers, service company personnel involved in stimulation services, technical consultants and specialists in enhanced oil recovery (EOR) and other technical staff.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 8,800 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

(1) Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Successful candidate will be certified as a "Certified Stimulation Engineer". Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, is a Senior Drilling & Petroleum Engineer with over 30 years of international experience within the onshore and offshore oil & gas industry. His wide experience covers Wellbore Preparation & Candidate Selection, Rock Mechanics & Fracture Geometry, Acidizing Techniques, Chemical EOR Methods, Gas Injection Methods, Horizontal & Multilateral Wells, Well Completion & Stimulation, Artificial Lift System Selection & Design, Drilling Practices, Drilling Fluids Technology, Drilling Operations, Directional Drilling, Formation Damage Evaluation & Preventive, Formation Damage Remediation, Drilling & Formation Damage, Simulation Program for The International Petroleum Business, Well Testing & Analysis, Well Design, Well Testing &

Oil Well Performance, Well Test Design Analysis, Well Test Operations, Well Testing & Perforation, Root Cause Analysis (RCA), RCA Method for Process Plant, RCA Techniques, Control Well-Flow Lines Parameters, Decision Analytic Modelling Methods for Economic Evaluation, Probabilistic Risk Analysis (Monte Carlo Simulator) Risk Analysis Foundations, Sulphur, Sour Natural Gas, Natural Gas Sweeting, Petroleum Production, Field Layout, Production Techniques & Control, Surface Production Operations, Project Risk Analysis, Feasibility Analysis Techniques, Capital Operational Costs, Flowmetering & Custody Transfer and Oil Refinery. Further, he is also well-versed in Enhanced Oil Recovery (EOR), Electrical Submersible Pumps (ESP), Oil Industries Orientation, Geophysics, Cased Hole Formation Evaluation, Cased Hole Applications, Cased Hole Logs, Production Wells Operations, Production Facilities Management, Perforating Methods & Design, Perforating Operations, Fishing Operations, Well & Reservoir Testing, Reservoir Stimulation, Hydraulic Fracturing, Carbonate Acidizing, Sandstone Acidizing, Drilling Fluids Technology, Drilling Operations, Directional Drilling, Artificial Lift, Gas Lift Design, Gas Lift Operations, Petroleum Business, Petroleum Economics, Field Development Planning, Gas Lift Valve Changing & Installation, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Rig Sizing, Hole Cleaning & Logging, Well Completion, Servicing & Work-Over Operations, Practical Reservoir Engineering, X-mas Tree & Wellhead Operations, Maintenance & Testing, Advanced Petrophysics/Interpretation of Well Composite, Construction Integrity & Completion, Coiled Tubing Technology, Corrosion Control, Slickline, Wireline & Coil Tubing, Pipeline Pigging, Corrosion Monitoring, Cathodic Protection as well as Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Gas Conditioning & Process Technology, Production Safety and Delusion of Asphalt. Currently, he is the Operations Consultant & the Technical Advisor at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling & petroleum discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well-regarded for his process and procedural expertise. Further, he was the Operations Manager at ETP Crude Oil Pipeline Services where he was fully responsible for optimum operations of crude oil pipeline, workover and directional drilling, drilling rigs and equipment, drilling of various geothermal deep wells and exploration wells. Dr. Chris was the Drilling & Workover Manager & Superintendent for Kavala Oil wherein he was responsible for supervision of drilling operations and offshore exploration, quality control of performance of rigs, coiled tubing, crude oil transportation via pipeline and abandonment of well as per the API requirements. He had occupied various key positions as the Drilling Operations Consultant, Site Manager, Branch Manager, Senior Drilling & Workover Manager & Engineer, Drilling & Workover Engineer, Process Engineer, Operations Consultant and Technical Advisor in several petroleum companies responsible mainly on an offshore sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a Professor of the Oil Technology College.

Dr. Chris has PhD in Reservoir Engineering and a Master's degree in Drilling & Production Engineering from the Petrol-Gaze Din Ploiesti University. Further, he is a Certified Surfaced BOP Stack Supervisor of IWCF, a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM) and has conducted numerous short courses, seminars and workshops and has published several technical books on Production Logging, Safety Drilling Rigs and Oil Reservoir.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 26th of January 2026

Day 1:	Monday, 26 th of January 2026
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Reservoir Stimulation Purpose & Benefits of Stimulation • Types: Matrix versus Fracturing
	Stimulation • Historical Development & Industry Trends • Stimulation's Role in Well Productivity
0930 - 0945	Break
0945 - 1030	Reservoir Characterization for Stimulation
	Porosity & Permeability Profiles • Lithology & Rock Mechanics • Fluid Properties & Saturation • Well Logs & Core Data Interpretation
	Enhanced Oil Recovery (EOR) Principles
1030 - 1130	Primary, Secondary & Tertiary Recovery • Mechanisms of EOR: Miscible,
1030 - 1130	Chemical, Thermal • Selection Criteria for EOR Methods • Reservoir
	Screening for EOR
	Matrix Acidizing Fundamentals
1130 – 1215	Acid Types: HCl HF Organic Blends • Reaction Mechanisms & Kinetics •
	Formation Damage Removal • Treatment Design & Execution
1215 – 1230	Break
	Fracture Stimulation Fundamentals
1230 – 1330	Hydraulic Fracturing Basics • Fracture Propagation Models • Proppant
	Selection & Placement • Fracture Diagnostics Techniques
1330 - 1420	Wellbore Preparation & Candidate Selection
	Reservoir & Well Candidate Screening • Mechanical Integrity Checks •
	Cleanout & Wellbore Conditioning • Pre-Stimulation Testing & Evaluation
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
1.120	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2: Tuesday 27th of January 2026

Day 2:	Tuesday, 27" of January 2026
0730 - 0830	Rock Mechanics & Fracture Geometry
	Stress Profile & Fracture Gradient • Young's Modulus & Poisson's Ratio •
	Fracture Height Containment • Natural Fractures & Stress Anisotropy
0830 - 0930	Fracturing Fluids & Additives
	Fluid Types: Gelled, Slickwater, Hybrid • Additives: Crosslinkers, Breakers,
	Surfactants • Fluid Rheology & Temperature Stability • Fluid Compatibility
	with Formation
0930 - 0945	Break
0945 – 1100	Proppant Selection & Transport
	Types: Sand, Ceramic, Resin-Coated • Strength & Conductivity • Settling
	Velocity & Transport Mechanisms • Proppant Placement Strategies

	Fracturing Equipment & Surface Setup
1100 – 1215	Pumps & Blending Units • Sand Handling Systems
	• Frac Tree & Manifold Setups • Data Acquisition & Monitoring Systems
1215 - 1230	Break
1230 – 1330	Real-Time Monitoring & Data Acquisition
	Pressure & Rate Monitoring • Microseismic Fracture Mapping • Surface &
	Downhole Diagnostics • Data Interpretation & Adjustments
1330 – 1420	Fracture Treatment Evaluation & Diagnostics
	Step-Rate Tests & Mini-Fracs • Net Pressure Analysis • Fracture Length &
	Width Estimation • Post-Job Evaluation Techniques
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

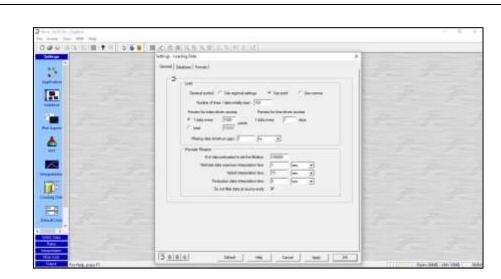
Day 3:	Wednesday, 28 th of January 2026
0730 - 0830	Acidizing Techniques & Applications
	Matrix Acidizing versus Acid Fracturing • Formation Type: Carbonate versus
0730 - 0830	Sandstone • Emulsified & Foamed Acid Systems• Acid Diversion & Zonal
	Coverage
	Acid-Rock Interaction & Reaction Kinetics
0830 - 0930	Reaction Products & Precipitation Risks • Wormholing in Carbonate
0030 - 0330	Formations • Spent Acid Cleanup Requirements • Kinetic versus Mass
	Transport Limitations
0930 - 0945	Break
	Acidizing Additives & Compatibility
0945 - 1100	Corrosion Inhibitors & Iron Control • Mutual Solvents & Surfactants • Scale
	Inhibitors & Clay Stabilizers • Additive Compatibility Testing
	Sandstone Acidizing Design
1100 – 1215	Mud Acid System Components • Preflush, Main Acid & Overflush Stages •
	Clay Stabilization Techniques • Post-Treatment Flowback Management
1215 – 1230	Break
	Acid Placement Methods
1230 – 1330	Bullheading versus Coiled Tubing • Diversion: Ball Sealers, Foam, Chemical •
	Zonal Isolation Techniques • Acid Volume Calculation & Placement
	Health Safety & Environmental Concerns
1330 – 1420	Chemical Handling Protocols • H2S & Acid Vapor Hazards • Spill Prevention
	& Containment • Waste Fluid Handling & Disposal
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

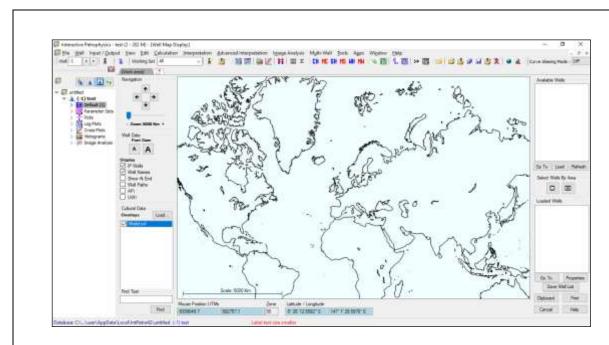
Thursday, 29th of January 2026 Day 4:

<u> </u>	Tharbady, 20 Or Garladry 2020
	Chemical EOR Methods
0730 – 0830	Polymer Flooding • Surfactant-Polymer Systems • Alkaline-Surfactant-
	Polymer (ASP) • Chemical Retention & Adsorption Issues
	Thermal EOR Techniques
0830 - 0930	Steam Injection: Cyclic, Continuous, SAGD • In-Situ Combustion
	• Heat Losses & Operational Limitations • Thermal Simulation Models

0930 - 0945	Break
0380 0318	Gas Injection Methods
0945 – 1100	CO ₂ Injection: Miscible & Immiscible • Nitrogen & Flue Gas Injection
	• Minimum Miscibility Pressure (MMP) • Gas Mobility Control Strategies
	Foam & Microbial EOR
1100 – 1215	Foam Stability & Injection Techniques • In-Situ Microbial Activity & Oil
1100 - 1213	Recovery • Bacteria Selection & Nutrient Management • Compatibility with
	Reservoir Conditions
1215 - 1230	Break
1230 - 1330	EOR Pilot Design & Monitoring
	Screening Criteria for Pilot Sites • Injection Well Design
	• Monitoring: Pressure, Production, Tracer • Pilot to Full-Field Scale-Up
	Integration of EOR with Stimulation Programs
1330 - 1420	Post-Stimulation EOR Synergy • Reservoir Compatibility Assessment •
	Production Data Analysis & Optimization • Long-Term Recovery Performance
	Tracking
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

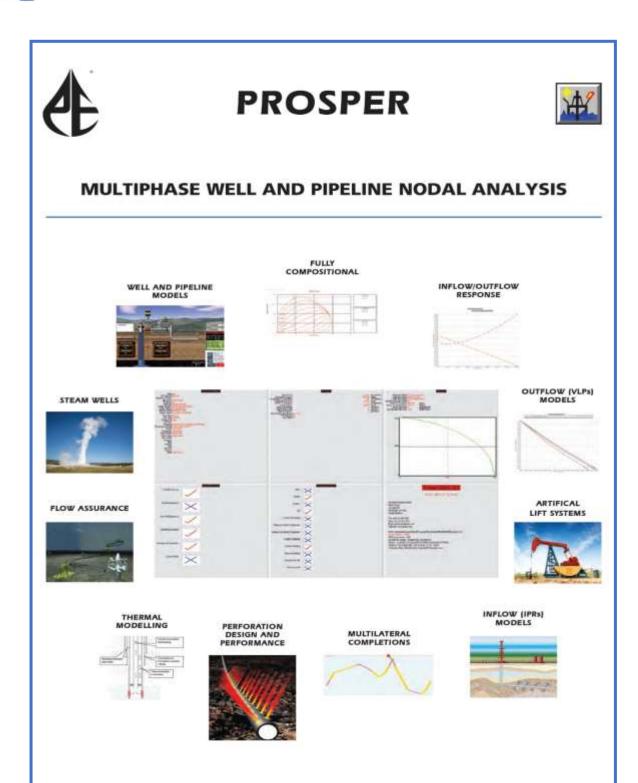
Dav 5: Friday, 30th of January 2026


Day 5:	Friday, 30 th of January 2026
0730 - 0830	Production Logging & Surveillance Tools
	PLT, Spinner, Temperature & Noise Logs • Tracer Injection & Production
	Profiling • Distributed Temperature Sensing (DTS) • Fiber Optic Monitoring
	Post-Stimulation Well Testing & Analysis
0830 - 0930	Pressure Transient Analysis (PTA) • Diagnostic Fracture Injection Test
0030 - 0930	(DFIT) • Decline Curve Analysis (DCA) • Flow Assurance & Productivity
	Index
0930 - 0945	Break
	Stimulation Optimization Strategies
0945 - 1100	Re-Fracturing Candidate Identification • Stimulation Timing & Sequence •
	Multistage Fracture Optimization • Cost versus Recovery Trade-Offs
	Stimulation Design Software & Modeling
1100 - 1200	FracCADE StimPlan GOHFER Basics • 3D Fracture Modeling • Acidizing
	Simulation Tools • Data Input Calibration & Validation
1200 - 1215	Break
	Case Studies: Global Reservoir Treatment Practices
1215 - 1230	Tight Gas Fracturing Success Story • Matrix Acidizing in Carbonate
1213 - 1230	Reservoirs • Chemical EOR Integration Example • Horizontal Well Multistage
	Fracturing
	Future Trends in Reservoir Stimulation
1230 - 1300	Machine Learning in Stimulation Design • Smart Completions & Digital
1230 - 1300	Fracturing • Environmentally Friendly Stimulation Fluids • Real-Time
	Adaptive Stimulation Systems
1300 - 1315	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1315 – 1415	COMPETENCY EXAM
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "KAPPA", "Interactive Petrophysics (IP)" and "PROSPER" software's.



KAPPA Ecrin v4.02.04

Interactive Petrophysics (IP) Software

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

