

COURSE OVERVIEW ME0098 Pump Technology

Course Title

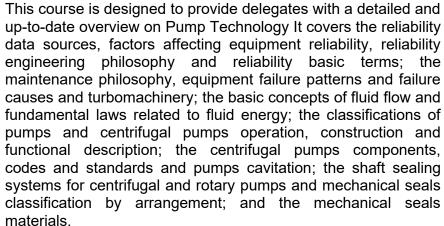
Pump Technology

Course Date/Venue

January 25-29, 2026/TBA Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd - Trade Centre, Dubai, UAE

Course Reference

ME0098


Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Practical sessions will be organized during the course using our state-of-the-art simulators and our cutting-edge Virtual Reality (VR) and Augmented Reality (AR) technologies to provide participants with a highly immersive and interactive learning experience.

During this interactive course, participants will learn the pumps failure mechanisms, centrifugal pumps selection criteria and performance of centrifugal pumps; the pumps components materials of construction, coating technology for pump components, bearings types and theory of operation and rolling elements bearings; the hydrodynamic bearings (oil film bearings), gear couplings, diaphragm couplings, disc coupling and lubrication system; the FAT, shipping, storage, installation, commissioning, operation and control of centrifugal pumps; the common operational issues that affect pumps reliability, pumps protection systems, pumps failure modes and troubleshooting; the mechanical seal failure modes and troubleshooting; the pumps maintenance, overhauling and inspection and predictive maintenance (PDM); and the vibration monitoring and analysis.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on the pump technology
- Discuss reliability data sources, factors affecting equipment reliability, reliability engineering philosophy and reliability basic terms
- Explain maintenance philosophy, equipment failure patterns and failure causes and turbomachinery
- Discuss the basic concepts of fluid flow and fundamental laws related to fluid energy as well as classifications of pumps and centrifugal pumps operation, construction and functional description
- Identify centrifugal pumps components, codes and standards and pumps cavitation
- Recognize shaft sealing systems for centrifugal and rotary pumps, mechanical seals classification by arrangement and mechanical seals materials
- Discuss pumps failure mechanisms, centrifugal pumps selection criteria and performance of centrifugal pumps
- Identify pumps components materials of construction, coating technology for pump components, bearings types and theory of operation and rolling elements bearings
- Describe hydrodynamic bearings (oil film bearings), gear couplings, diaphragm couplings, disc coupling and lubrication system
- Carryout FAT, shipping, storage, installation, commissioning, operation and control of centrifugal pumps
- Recognize common operational issues that affect pumps reliability, pumps protection systems, pumps failure modes and troubleshooting and mechanical seal failure modes and troubleshooting
- Apply pumps maintenance, overhauling and inspection, predictive maintenance (PDM) and vibration monitoring and analysis

Exclusive Smart Training Kit - H-STK®

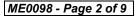
Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of pump technology for plant and maintenance engineers, process engineers, maintenance personnel, supervisors and reliability specialists working in refineries and petrol filling stations. The course is also highly valuable to senior maintenance technical staff who are involved with pumps, their operation and their maintenance.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.



Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

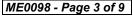
10% **Practical Workshops & Work Presentations**

10% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

30% VR/AR Hands-on Practical Application

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.



Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Moayyad Sanori is a Senior Mechanical & Maintenance Engineer with almost 30 years of extensive experience within the Centrifugal Pump Selection, Construction, Operation, Maintenance, Repair & Troubleshooting, Pumps & Valves Maintenance, Centrifugal Pumps & Compressors Overhauling, Positive Displacement Pump, Valve Inspection & Testing, Safety Relief Valves, Valves Installation, Sizing & Selection, Air

Compressor & Nitrogen Generators, Heat Exchangers, Steam & Gas Turbine, Heat Recovery Steam Generator, Combined Cycle, Pipe Erection Installation, Welding Operations, Tank Pressure LPG, CNC Fabrication, Safety Valves, Distillation Columns, Gearbox, Pipe Fitting, Lathes, Milling, Diesel Engines, Boiler & Burners, Turbines & Motors, Root Cause Analysis Techniques, Rotating Equipment Reliability Assurance, Site Reliability Optimization Plan, Oil & Gas, Petrochemical and Refinery Industries. His expertise widely covers in the areas of Fire Protection & Life Safety System Testing, Sprinkler System Inspection & Maintenance, Standpipe & Hose Systems, Fire Pump Maintenance, Piping Assessment, Mechanical Pipe Fitting, Fire Pump Inspection & Testing, Fire Suppression Design, Hydrocarbon Production Operation, Monitoring & Maintaining HSE Systems, Emergency & Critical Situations Control, Integrated Process Systems Start-up, Shutdown, Monitoring & Control, Process Plant Equipment Isolation, Mechanical Maintenance, Maintenance & Reliability Management, Preventive & Predictive Maintenance, Machinery Failure Analysis (RCFA), Condition Based Monitoring, Power Piping, and ASNT-NDT Inspection Methods. He is currently the General Maintenance Supervisor of Jable Oil Services with collaboration of Waha Oil Company wherein he is responsible in supervising the maintenance and operation of pumps, compressors, gas turbines, steam turbines, pipe testing and training of new employees.

During Mr. Moayyad's career he has handled key positions as such Mechanical Maintenance Manager, **Mechanical Maintenance** Supervisor. Pipe Supervisor. Radiation Supervisor, NDT Supervisor, **Maintenance** General Supervisor, Piping Testing Engineer, NDT Technician, Mechanical & Pipe Fitting Instructor and Pump Maintenance Technician of various international companies including Jordan Petroleum Refinery Company, Saudi Aramco, Rawabi Industrial Support Services, Experts Industrial Testing Company, Petra for Mechanical Testing Company and Al-Waei Metal Forming Establishment.

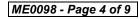
Mr. Moayyad has an Associate Diploma in Mechanical Engineering. Further, he is a Certified Instructor/Trainer, a Certified ASNT-NDT Level II in Radiography (RT), Magnetic Particle Testing (MT), Liquid Penetrant Testing (PT) and Ultrasonic Thickness Testing (UTT) and a Certified Assessor by City & Guilds Level 3 Certificate in Assessing Vocational Achievement under the TAQA Qualification (Training, Assessment & Quality Assurance). He has further delivered numerous trainings, courses, seminars, workshops and conferences internationally.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.



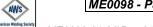
<u>Course Program</u>
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Sunday 25th of January 2026

Day 1:	Sunday, 25 th of January 2026
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0900	Introduction to Reliability & Maintenance Understanding Reliability • Reliability Data Sources • Factors Affecting Equipment Reliability • Reliability Philosophy • Reliability Engineering Philosophy • Reliability Basic Terms
0900 - 0930	Maintenance Philosophy Understanding Maintenance • Maintenance Policies • Maintenance Policies - Comparisons
0930 - 0945	Break
0945 - 1030	Equipment Failure Patterns & Failure Causes Equipment Failure Patterns • How Failures Appear? • Causes of Machinery Failures
1030 - 1100	Turbomachinery What is Meant by "Turbomachinery"? • Classification of "Turbomachines"
1100 – 1130	Basic Concepts of Fluid Flow & Fundamental Laws Related to Fluid Energy Compressible & Incompressible Fluids • Volumetric Flow Rate "Q" • Mass Flow Rate "m" • Energy • Energy of Fluid Flow • Bernoulli's Equation (Conservation of Energy)
1130 - 1215	Introduction to Pumps
1215 - 1230	Break
1230 - 1330	Classifications of Pumps
1330 – 1420	Centrifugal Pumps Theory of Operation, Construction & Functional Description Centrifugal Pumps – Theory of Operation • Centrifugal Pumps Construction • Centrifugal Pumps – Casing • Centrifugal Pumps – Shaft
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Monday, 26th of January 2026 Dav 2:

Day Z.	Monday, 20 Or Sandary 2020
0730 – 0815	Centrifugal Pumps Components - Impeller
	Centrifugal Pumps – Hydraulic Loads • Centrifugal Pumps – Impeller •
	Centrifugal Pumps Construction • Centrifugal Pumps – Internal Seals •
	Centrifugal Pumps – Advantages • Centrifugal Pumps – Disadvantages •
	Centrifugal Pumps – Applications
0815 - 0900	Centrifugal Pumps Codes & Standards
0900 – 0930	Pumps Cavitation
	Cavitation - Introduction • Types of Cavitation • Suction Cavitation •
	Discharge/Suction Recirculation • Internal Recirculation • Air Entrainment
0930 - 0945	Break
0945 – 1030	Shaft Sealing Systems for Centrifugal & Rotary Pumps
	Pumps Shaft Sealing Devices • Gland Packing



1030 – 1130	Mechanical Seal Mechanical Seal – Main Components • How a Mechanical Seal Works? • Mechanical Seal – Balancing Ratios • Mechanical Seal – Split Design
1130 - 1230	Mechanical Seals Classification by Arrangement Mechanical Seal Configurations • API Standards
1215 - 1230	Break
1230 - 1330	Mechanical Seals Materials
1330 - 1420	Pumps Failure Mechanisms Overload • Fatigue • Thermal Mechanical Fatigue (TMF) • Surface Fatigue (Spalling or Flaking) • Thermal Shock • Corrosion • Pitting Corrosion • Standby Corrosion • Abrasive Wear • Erosion • Erosion Corrosion • Cavitation Erosion • Cavitation Corrosion • Corrosion Fatigue (CF)
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 27th of January 2026

Day 3:	Tuesday, 27 th of January 2026
	Centrifugal Pumps Selection Criteria
0730 – 0815	Key Design Parameters of Pumps • Basic Pumps Selection Criteria • Series
	Pumps Performance Curves • Parallel Pumps Performance Curves
	Performance of Centrifugal Pumps
0015 0000	Best Efficiency Point (BEP) • Preferred Operating Region (POR) • Minimum
0815 – 0900	Continuous Stable Flow (MCSF) • Effect of Impeller Trim on the Pump BEP •
	Static Losses • Friction (Dynamic) Losses
0900 - 0930	Pumps Components Materials of Construction
0900 - 0930	Impellers • Casings • Shafts • Wear Rings
0930 - 0945	Break
0945 - 1030	Coating Technology for Pump Components
1030 - 1130	Bearings Types & Theory of Operation
1030 - 1130	Bearings – Introduction • Bearings – Functions • Bearings – Classifications
	Rolling Elements Bearings
	Rolling Element Bearings - Types • Rolling Element Bearings - Lubrication •
1130 - 1230	Rolling Element Bearings - Loads • Rolling Element Bearings - Rating Life •
	Rolling Element Bearings - Advantages • Rolling Element Bearings -
	Disadvantages
1215 – 1230	Break
	Hydrodynamic Bearings
1230 - 1330	Hydrodynamic Bearings - Working Principle • Hydrodynamic Bearings -
	Advantages • Hydrodynamic Bearings – Disadvantages
	Hydrodynamic Bearings (Oil Film Bearings)
	Cylindrical Journal (Radial) Bearings • Elliptical Journal (Radial) Bearings •
1330 – 1420	Tilting-Pad Journal (Radial) Bearings • Thrust (Axial) Bearings • Tapered-
	Land Thrust (Axial) Bearings • Tilting Pad Thrust (Axial) Bearings •
	Hydrodynamic Bearings – Material
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4. Wednesday 28th of January 2026

Day 4:	Wednesday, 28 [™] of January 2026
0730 - 0815	Couplings
	Couplings – Function • Couplings – Main Components • Types of Couplings •
	Jaw (Spider) Coupling • Tire Coupling • Grid Coupling
0815 - 0900	Gear Couplings
	Gear Couplings – Features • Gear Couplings – Disadvantages
0900 - 0930	Diaphragm Couplings
0900 - 0930	Diaphragm Coupling – Features • Diaphragm Coupling – Advantages
0930 - 0945	Break
0945 - 1030	Disc Coupling
	Lubrication System
1030 - 1130	Lubrication System Function • Lube Oil System Basic Components • Lube Oil
	Systems Standards
	Centrifugal Pumps, FAT, Shipping, Storage, Installation &
	Commissioning
	Pumps - Factory Acceptance Tests (FAT) • Pumps - Acceptance Tests •
1120 1220	Pumps – Shipping • Pumps – Lifting & Moving • Pumps – Storage • Pumps –
1130 – 1230	Installation & Commissioning • Pumps – Foundation • Pumps – Alignment •
	Pumps Installation – Piping Configuration • Pumps – Piping Configuration •
	Pumps - Pipe Stress/Strain • Pumps - Piping Configuration • Pumps -
	Commissioning
1215 - 1230	Break
	Centrifugal Pumps Operation & Control
	Centrifugal Pumps - Startup Procedure • Multiple Pumps Operation •
1230 - 1330	Centrifugal Pumps - Run Strategy • Centrifugal Pumps - Run (Changeover)
	Strategy • Methods of Varying Pumps Performance • Adjusting Pumps
	Performance
	Common Operational Issues that Affect Pumps Reliability
	Main Operation Issues that Affect Pumps Reliability • Operating Pump with
1220 1420	Suction Cavitation • Pump Recirculation • Air Binding • Pump Operation
1330 – 1420	Away from BEP • Pump Reverse Rotation • Lack of Fluid (Operating the
	Pump Dry) • Closed Head Operation • Wrong Fluid Type for the Pump •
	Pump Cycling • Pipe Strain
1420 – 1430	Recap
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Tuesday, 29th of January 2026 Day 5:

0730 - 0830	Pumps Protection Systems
	Centrifugal Pumps – Protection Devices
0830 - 0930	Pumps Failure Modes & Troubleshooting
	What is Troubleshooting? • Machinery Troubleshooting - Process •
	Centrifugal Pumps – FMs & Troubleshooting
0930 - 0945	Break
0945 – 1030	Mechanical Seal Failure Modes & Troubleshooting
	Mechanical Seals Failure Causes • Mechanical Seals – FMs & Troubleshooting
1030 – 1100	Pumps Maintenance, Overhauling & Inspection
	Understanding Maintenance • Pumps Maintenance & Inspection



	Pump Maintenance & Inspection
	Mechanical seals • Mechanical Seals – Installation • Mechanical Seal
	Installation – Process • Pump Overhaul • Replace Stuffing Box Packing •
	Replace Stuffing Box Packing – Tools • Replace Stuffing Box Packing – Steps •
1100 – 1145	Pump Disassembly • Pump Pre-Disassembly Checks • Check Shaft End Play
	(Axial Movement) • Check Radial Movement of Shaft (Lift Check) • Check
	Shaft Run-out (Bent Shaft) • Couplings Inspection & Maintenance • Check
	Bearing Clearance
1145 1220	Predictive Maintenance (PDM)
1145 – 1230	ISO Definition
1230 - 1245	Break
	Vibration Monitoring & Analysis
	What is Vibration? • What Causes Vibration? • Effect of Vibration on
	Machinery • Machine Vibration Monitoring – Principle • Characteristics of
1245 - 1345	Vibration • How Vibration Signal is Characterized? • Vibration Monitoring •
	Vibration Sensor Location & Arrangement • Representation of Vibration Data
	• Types of Data Collection • Which Machines Need to be Monitored? •
	Vibration Monitoring and Analysis
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about i
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Centrifugal Pumps and Troubleshooting Guide 3.0" and VR/AR Applications.

Virtual Reality (VR) and Augmented Reality (AR) Practical Sessions

Practical sessions will be organized during the course using cutting-edge Virtual Reality (VR) and Augmented Reality (AR) technologies to provide participants with a highly immersive and interactive learning experience. Through VR headsets and AR-enabled devices, delegates will be able to simulate real-world scenarios in a safe and controlled virtual environment, allowing them to practice the theories and techniques learned in class. Participants will engage in realistic, hands-on exercises such as operating equipment, performing inspections, troubleshooting systems and responding to simulated incidents that closely replicate actual field conditions. This advanced training approach enhances understanding, improves decision-making skills and builds confidence by bridging the gap between theoretical knowledge and real-world application.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

