

COURSE OVERVIEW EE0691 Maintenance of Marine Electrical Plants, Equipment, **Instrumentation & Control Devices**

Course Title

Maintenance of Marine Electrical Plants. Equipment, Instrumentation & Control **Devices**

Course Date/Venue

January 26-30, 2025/Meeting Plus 2, City Centre Rotana Doha, Doha, Qatar

o CEUS

(30 PDHs)

Course Reference

EE0691

Course Duration/Credits

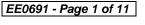
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions exercises. Theory learnt will be applied using one of our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Maintenance Marine Electrical Plants. Equipment. Instrumentation & Control Devices. It covers the marine electrical systems, safety procedures and regulations and basic electrical principles; the electrical distribution systems and power generation vessels: the common marine electrical equipment covering transformers, switchboards and circuit breakers; and the routine maintenance practices, electrical systems troubleshooting and motors and drives maintenance.

Further, the course will also discuss the battery systems and UPS maintenance, electrical insulation testing and electrical documentation and reporting; the types of instrumentation used in marine electrical plants including its basic principles and applications; the control systems and automation, calibration of instruments, sensors and transducers; and the process control and monitoring and maintenance of control panels.



During this interactive course, participants will learn the advanced troubleshooting techniques, predictive maintenance methods and maintenance of navigation and communication systems; the electrical power quality management, marine electrical system upgrades and environmental considerations in maintenance; the emerging technologies in marine electrical maintenance including regulatory compliance and standards; the electrical emergencies and response plan; and the emergency shutdown and isolation procedures.

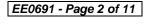
Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on maintenance of marine electrical plants, equipment, instrumentation and control devices
- Discuss marine electrical systems, safety procedures and regulations and basic electrical principles
- Recognize electrical distribution systems and power generation on marine vessels
- Identify the common electrical equipment covering transformers, switchboards and circuit breakers
- Carryout routine maintenance practices, electrical systems troubleshooting and motors and drives maintenance
- Apply battery systems and UPS maintenance, electrical insulation testing and electrical documentation and reporting
- Identify the types of instrumentation used in marine electrical plants including its basic principles and applications
- Recognize control systems and automation, calibration of instruments, sensors and transducers
- Employ process control and monitoring and maintenance of control panels
- Perform advanced troubleshooting techniques, predictive maintenance methods and maintenance of navigation and communication systems
- Apply electrical power quality management, marine electrical system upgrades and environmental considerations in maintenance
- Discuss the emerging technologies in marine electrical maintenance including regulatory compliance and standards
- Develop electrical emergencies and response plan including emergency shutdown and isolation procedures

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.



Who Should Attend

This course provides an overview of all significant aspects and considerations of maintenance of marine electrical plants, equipment, instrumentation and control devices for electrical engineers, instrumentation and control engineers, project engineers, maintenance engineers, power system protection and control engineers, building service designers, ship officers, marine engineers, data systems planners and managers as well as electrical, instrumentation and control technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• The International Accreditors for Continuing Education and Training (IACET - USA)

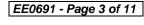
Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.



Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ahmed Abozeid is a Senior Electrical & Instrumentation Engineer with over 30 years of Onshore & Offshore experience within the Oil & Gas and Power industries. His wide expertise covers HV Cable Design, Cable Splicing & Termination, Cable Jointing Techniques, High Voltage Electrical Safety, HV/MV Cable Splicing, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System Safe Operation, High Voltage Safety, High Voltage

Transformers, Safe Operation of High Voltage & Low Voltage Power Systems, Electric Distribution System Equipment, ABB 11KV Distribution Switchgear, Rotork Operation & Maintenance, Power System Protection and Relaying, Electrical Motors & Variable Speed Drives, Motor Speed Control, Power Electronic Converters, Control Valve, Flowmetering & Custody Transfer, Meters Calibration, Installation & Inspection, Crude Metering & Measurement Systems, Flow Meter Troubleshooting. AC Converters Section, Maintenance Electromagnetic Compatibility (EMC), Motor Failure Analysis & Testing, Machinery Fault Diagnosis, Bearing Failure Analysis Process Control & Instrumentation, Process Control Measurements, Control System Commissioning & Start-Up, Control System & Monitoring, Power Station Control System, Instrumentation Devices, Process Control & Automation. PID Controller. Distributed Control Systems (DCS). Programmable Logic Controllers (PLC), ABB PLC & DCS System, Gas Analyzers, Simulation Testing, Load Flow, Short Circuit, Smart Grid, Vibration Sensors, Cable Installation & Commissioning, Calibration Commissioning and Site Filter Controller. Further, he is also well-versed in Fundamentals of Electricity, Electrical Standards, Electrical Power, PLC, Electrical Wiring, Machines, Transformers, Motors, Power Stations, Electro-Mechanical Systems, Automation & Control Systems, Voltage Distribution, Power Distribution, Filters, Automation System, Electrical Variable Speed Drives, Power Systems, Power Generation, Power Transformers, Diesel Generators, Power Stations, Uninterruptible Power Systems (UPS), Battery Chargers and AC & DC Transmission. He is currently the Project Manager wherein he manages, plans and implements projects across different lines of business.

Mr. Ahmed worked as the Electrical Manager, Electrical Power & Machine Expert, Electrical Process Leader, Team Leader, Electrical Team Leader, Technical Instructor, and Instructor/Trainer from various companies such as the Lafarge Nigeria, Egyptian Cement Company, ECC Training Center, Alrajhi Construction & Building Company and Ameria Cement Company, just to name a few.

Mr. Ahmed has a Bachelor's degree in Electrical Engineering. Further, he is a Certified Instructor/Trainer, Certified TQUK Level 3 Vocational Achievement (RQF) Assessor and has delivered numerous trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 26th of January 2025

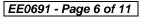
<u> </u>	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Marine Electrical Systems
0830 - 0900	Overview of Marine Electrical Systems and their Importance in Petroleum
	<i>Operations</i> ● <i>Key Components and Configurations</i>
	Safety Procedures & Regulations
0900 - 0930	Marine Electrical Safety Standards • Personal Protective Equipment (PPE) and
	Safety Protocols
0930 - 0945	Break
	Basic Electrical Principles
0945 - 1130	Understanding Voltage, Current, Resistance, and Power ● Ohm's Law and its
	Applications in Marine Settings
	Electrical Distribution Systems
1130 - 1230	Types of Distribution Systems in Marine Environments • Single-Line Diagrams
	and Schematics
1230 – 1245	Break
	Power Generation on Marine Vessels
1245 - 1320	Types of Marine Generators and Their Operation • Generator Control and
	Synchronization
	Common Electrical Equipment
1350 - 1420	Transformers, Switchboards, and Circuit Breakers • Basic Operation and
	Maintenance Practices
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2: Monday, 27th of January 2025

Day Z.	Moriday, 27 Or Saridary 2025
0730 - 0830	Routine Maintenance Practices
	Scheduled Maintenance Routines • Preventive Maintenance Strategies
0830 - 0930	Troubleshooting Electrical Systems
	Common Electrical Faults and Troubleshooting Techniques • Use of Diagnostic
	Tools and Equipment
0930 - 0945	Break
0945 – 1130	Motors & Drives Maintenance
	Types of Motors Used in Marine Applications • Maintenance of AC and DC
	Motors, Including Drives
1130 – 1230	Battery Systems & UPS Maintenance
	Types of Marine Battery Systems • Maintenance Procedures for Batteries and
	Uninterruptible Power Supplies (UPS)
1230 - 1245	Break
1245 – 1330	Electrical Insulation Testing
	Importance of Insulation in Marine Environments • Methods of Testing
	Insulation Resistance
1330 - 1420	Electrical Documentation & Reporting
	Keeping Accurate Maintenance Records • Importance of Documentation for
	Compliance and Future Maintenance
1420 - 1430	Recap
1430	Lunch & End of Day Two

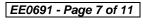
Dav 3: Tuesday. 28th of January 2025

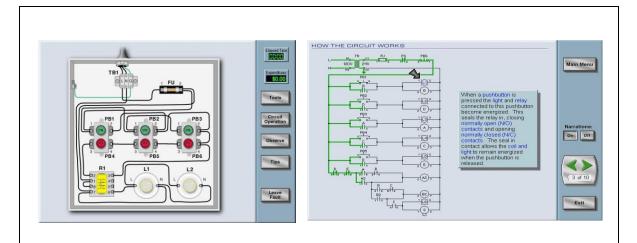
Day 3:	ruesday, 28" of January 2025
	Basics of Marine Instrumentation
0730 - 0830	Types of Instrumentation Used in Marine Electrical Plants • Basic Principles
	and Applications
	Control Systems & Automation
0830 - 0930	Overview of Marine Control Systems • Introduction to PLCs and SCADA
	Systems
0930 - 0945	Break
	Calibration of Instruments
0945 - 1130	Importance of Calibration in Maintaining Accuracy • Procedures for Calibrating
	Common Marine Instruments
	Sensors & Transducers
1130 - 1230	Types of Sensors Used in Marine Environments • Maintenance and
	Troubleshooting of Sensors and Transducers
1230 - 1245	Break
	Process Control & Monitoring
1245 - 1330	Basics of Process Control in Marine Electrical Systems • Monitoring Techniques
	and Equipment
1330 - 1420	Maintenance of Control Panels
	Components of Control Panels ● Routine Checks and Maintenance Procedures
1420 - 1430	Recap
1430	Lunch & End of Day Three



Day 4:	Wednesday, 29 th of January 2025
	Advanced Troubleshooting Techniques
0730 - 0830	Diagnostic Tools for Complex Electrical Faults • Case Studies and Practical
	Troubleshooting Scenarios
	Predictive Maintenance Methods
0830 - 0930	Condition Monitoring and Predictive Maintenance • Vibration Analysis,
	Thermography, and Other Predictive Techniques
0930 - 0945	Break
0945 – 1130	Maintenance of Navigation & Communication Systems
	Overview of Marine Navigation and Communication Equipment • Maintenance
	Procedures and Troubleshooting
1130 – 1230	Electrical Power Quality Management
	Importance of Power Quality in Marine Applications • Identifying and
	Mitigating Power Quality Issues
1230 - 1245	Break
1245 – 1330	Marine Electrical System Upgrades
	Planning and Executing System Upgrades
1330 - 1420	Environmental Considerations in Maintenance
	Impact of Marine Environment on Electrical Systems • Corrosion Prevention
	and Control Techniques
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday, 30 th of January 2025
	Hands-on Maintenance Activities
0700 - 0830	Practical Exercises on Maintenance Tasks • Use of Tools and Equipment in a
	Controlled Environment
	Case Studies & Real-world Scenarios
0830 - 0930	Analysis of Real-World Maintenance Scenarios • Group Discussions and
	Problem-Solving Activities
0930 - 0945	Break
	Emerging Technologies in Marine Electrical Maintenance
0945 - 1130	Introduction to New Technologies and their Applications • Future Trends in
	Marine Electrical Maintenance
	Regulatory Compliance & Standards
1130 - 1230	Understanding Marine and Petroleum Industry Standards • Ensuring
	Compliance Through Proper Maintenance Practices
1230 - 1245	Break
	Emergency Procedures & Response
1245 - 1345	Electrical Emergencies and Response Plans • Training on Emergency Shut-
	Down and Isolation Procedures
1345 - 1400	Course Conclusion
1400 - 1415	POST TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

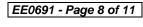




Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "Simutech Troubleshooting Electrical Circuits V4.1", "Allen Bradley SLC 500", "AB Micrologix 1000 (Digital or Analog)", "AB SLC5/03", "AB WS5610 PLC", "Siemens S7-1200", Siemens S7-400" "Siemens SIMATIC S7-300", "Siemens S7-200" "GE Fanuc Series 90-30 PLC", "Schneider Electric Magelis HMISTU", "Siemens SIMATIC Step 7 Professional Software", and "HMI SCADA".

<u>Simutech Troubleshooting Electrical Circuits V4.1</u>



Allen Bradley SLC 500 Simulator

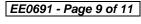
Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-1200 Simulator



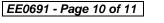
Siemens S7-400 Simulator

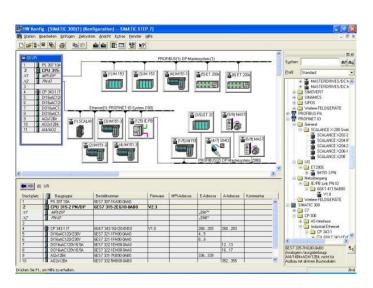
Siemens SIMATIC S7-300

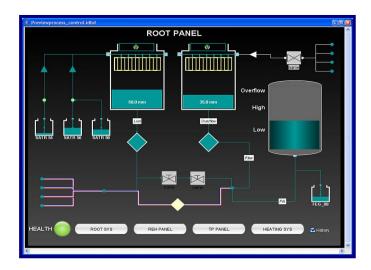
Siemens S7-200 Simulator

GE Fanuc Series 90-30 PLC Simulator

Schneider Electric Magelis HMISTU







Siemens SIMATIC Step 7 Professional Software

HMI SCADA

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

