

COURSE OVERVIEW FE1017 Welding Inspector & Heat Treatment

Course Title

Welding Inspector & Heat Treatment

Course Date/Venue

Please see page 3

Course Reference

FE1017

Course Duration/Credits

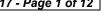
Five days/3.0 CEUs/30 PDH s

Course Description

This practical and highly-interactive course includes practical sessions and exercises where participants carryout welding inspection. Theory learnt in the class will be applied using the "AWS Tool Kit" and "Structural Weld Replica Kit" suitable for in-class training.

This course is designed to provide participants with a detailed and up-to-date overview of Welding Inspector & Heat Treatment. It covers the roles and responsibilities of a welding inspector, key stages in considerations inspection, safety inspection work and essential inspection tools and equipment; the welding processes, welding symbols and drawings, welding consumables, metallurgy for welding inspectors and industry codes and standards; the types of weld defects and causes and prevention of weld defects; the visual inspection techniques and dimensional inspection; the welding procedure specification (WPS), procedure qualification record (PQR) and welder performance qualification (WPQ); and the record-keeping best practices.

Further, the course will also discuss the nondestructive testing (NDT), radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT) and dye penetrant testing (PT); the NDT result documentation, results evaluation per applicable code and communicating with NDT technicians; the purpose of heat treatment in welding, types and metallurgical effects; and the applicable codes and standards.



During this interactive course, participants will learn the preheating in welding, post-weld heat treatment (PWHT), heat treatment equipment and heat treatment procedures; the common heat treatment problems and solutions; the uneven heating, overheating and metallurgical damage and thermocouple placement errors; the steps in qualifying a WPS, test coupon preparation, mechanical testing requirements and acceptance per applicable code; the inspector's role in welding quality control and heat treatment quality verification; reviewing temperature charts and verifying soak times and rates; and the acceptance criteria compliance and documentation review.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get certified as a "Certified Welding Inspector"
- Discuss the roles and responsibilities of a welding inspector, key stages in welding inspection, safety considerations in inspection work and essential inspection tools and equipment
- Illustrate welding processes, welding symbols and drawings and identify welding consumables, metallurgy for welding inspectors and industry codes and standards
- Recognize the various types of weld defects and causes and prevention of weld defects and apply visual inspection techniques and dimensional inspection
- Employ welding procedure specification (WPS), procedure qualification record (PQR), welder performance qualification (WPQ) and record-keeping best practices
- Carryout non-destructive testing (NDT), radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT) and dye penetrant testing (PT)
- Apply NDT result documentation, evaluate results per applicable code and communicate with NDT technicians
- Discuss the purpose of heat treatment in welding including its types, metallurgical effects and applicable codes and standards
- Employ preheating in welding, post-weld heat treatment (PWHT), heat treatment equipment and heat treatment procedures
- Identify common heat treatment problems and solutions covering uneven heating, overheating and metallurgical damage and thermocouple placement errors
- Carryout steps in qualifying a WPS, test coupon preparation, mechanical testing requirements and acceptance per applicable code
- Recognize inspector's role in welding quality control and apply heat treatment quality verification by reviewing temperature charts, verifying soak times and rates, acceptance criteria compliance and documentation review

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of welding inspection and heat treatment for welding inspectors and quality control personnel, welding engineers and technicians, NDT (Non-Destructive Testing) technicians, heat treatment technicians and engineers, QA/QC managers and supervisors, fabrication and construction professionals, mechanical and pipeline engineers, professionals seeking certification (e.g., CSWIP, AWS CWI, BGAS-CSWIP, ASNT NDT Level II/III) and other technical staff.

Course Date/Venue

Session(s)	Date	Venue
1		Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
2	1 10toper 27-31 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	November 23-27, 2025	Meeting Plus 9, City Centre Rotana, Doha, Qatar
4		Crowne Meeting Room, Crowne Plaza Al Khobar, an IHG Hotel, Al Khobar, KSA

Course Fee

Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Al Khobar	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

(1) Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Successful candidate will be certified as a "Certified Welding Inspector". Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. George Poulos, MBA, MSc, BSc, CEng, is a Senior Corrosion & Welding Engineer with over 30 years of extensive experience within the Oil & Gas, Petrochemical, Refinery, Construction, Aircraft & Shipbuilding Industry. His wide experiences covers in the areas of Welding & Cutting, Welding Inspection, Welding & Machine Techniques, TIG & Arc Welding, Shielded Metal Arc Welding, Gas Tungsten & Gas Metal Arc Welding, Welding Procedure Specifications & Qualifications, Aluminium Welding, Hot & Cold Tapping Techniques, Hot

Work-Safety, SMAW, GTAW, Welding Techniques, Pipeline Welding Practices, Welding Engineering, Welding Fatigue & Fracture Mechanics, Welding Inspection Technology, Welding Safety, Welding Defects Analysis, Welding Technology, Welding Problems, Welding & Non Destructive Testing, Metallurgy Techniques, Metallurgical Failure Analysis & Prevention, Corrosion Fabrication & Inspection, Fabrication & Repair, Corrosion Prevention, Corrosion Engineering, Oilfield Corrosion Monitoring & Control, Corrosion Inhibition, Corrosion Management in Process Operations, Corrosion & Prevention of Failures, Material Selection, Cathodic Protection Systems. Further, he is also well-versed in Hot Rolling Process, Hot Strip Mill, Mill Operations, Roll Mill, Steel Making Process, Steel Manufacturing, Electric Arc Furnace (EAF), Steel Forging, Steel Manufacturing & Process Troubleshooting, Slit Rolling, Carbon Steel Pipe Wall Thickness & Grade Selection, Ferro-Alloys, Steel Metallurgy, Steel Structure Welding, Steelmaking Slag, Steel Making Application, Heat Treatment & Prevention Techniques, Corrosion Fabrication & Inspection and Post Weld Heat Treatment.

During his career life, Mr. Poulos has gained his practical and field experience through his various significant positions and dedication as the Chief Executive, Head of Technical Studies, Manager, Senior Consultant, Lead Welding Engineer, Senior Welding Engineer, Design Engineer, Sales Engineer, Author, Welding Instructor, Visiting Lecturer and Technical Proposal Research Evaluator from various international companies such as Greek Welding Institute, Hellenic Quality Forum and International Construction Companies such as Shipbuilding, Aircraft Industry and Oil and Gas Industry.

Mr. Poulos is a Registered Chartered Engineer and has a Master's degree in Naval Architecture, a Bachelor's degree in Welding Engineering and a Master of Business Administration (MBA) from the Sunderland University, Aston University and Open University, UK, respectively. Further, he is a Certified Trainer/Instructor, an active Member of Chartered Quality Institute (CQI), The British Welding Institute (TWI), The Royal Institution of Naval Architects (RINA) and American Welding Society (AWS), a Registered **EWF/IW** (European Welding Federation-International Welding Institute W/E) and an IRCA Accredited External Quality Systems Auditor through BVQI. He is an Author of Technical Book dealing with Protection/Health/Safety in the Welding/Cutting domain and delivered various trainings, seminars, conferences, workshops and courses globally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Welding Inspection Roles & Responsibilities of a Welding Inspector • Key Stages in Welding Inspection • Safety Considerations in Inspection Work • Essential Inspection Tools & Equipment
0930 - 0945	Break
0945 - 1030	Welding Processes Overview SMAW (Shielded Metal Arc Welding) • GTAW (Gas Tungsten Arc Welding) • GMAW (Gas Metal Arc Welding) • SAW (Submerged Arc Welding)
1030 - 1130	Welding Symbols & Drawings Standard Welding Symbols (ISO/AWS) • Reading & Interpreting Welding Symbols on Drawings • Joint Types & Positions Representation • Practical Interpretation Exercises
1130 - 1215	Welding Consumables Types of Electrodes & Filler Metals • AWS/EN Classification Systems • Storage & Handling Requirements • Impact on Weld Quality
1215 – 1230	Break
1230 - 1330	Metallurgy for Welding Inspectors Basic Metallurgy Concepts for Welds • Heat-Affected Zone (HAZ) Characteristics • Grain Structure Changes During Welding • Common Metallurgical Defects
1330 – 1420	Industry Codes & Standards ASME Section IX – Welding Qualifications • AWS D1.1 Structural Welding Code • ISO 9606 Welder Qualification Standards • API 1104 for Pipeline Welding
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Types of Weld Defects
0730 – 0830	Porosity & Gas Inclusions • Slag Inclusions • Lack of Fusion & Incomplete
	Penetration • Cracks (Hot, Cold, Crater Cracks)
0830 – 0930	Causes & Prevention of Weld Defects
	Welding Parameter Control • Joint Preparation & Fit-Up • Environmental
	Conditions Impact • Welder Skill Level
0930 - 0945	Break
	Visual Inspection Techniques
0945 – 1100	Pre-Weld Inspection • In-Process Inspection • Post-Weld Inspection • Visual
	Acceptance Criteria

1100 – 1230	Dimensional Inspection Fillet Weld Gauges & Bridge Cam Gauges • Undercut, Overlap & Reinforcement Measurement • Alignment & Distortion Checks • Tolerances per Codes
1230 - 1245	Break
1245 – 1330	Weld Documentation & Traceability Welding Procedure Specification (WPS) • Procedure Qualification Record (PQR) • Welder Performance Qualification (WPQ) • Record-Keeping Best Practices
1330 - 1345	Practical Exercises in Visual Inspection Hands-On Defect Identification on Samples • Use of Gauges & Measuring Tools • Reporting Inspection Results • Real-World Case Studies
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 3	
	Basics of Non-Destructive Testing (NDT)
0730 – 0830	Purpose & Benefits of NDT in Welding • Common Methods for Weld Inspection
	• Inspector's Role in NDT Coordination • Limitations of Visual Inspection
	Radiographic Testing (RT)
0830 - 0930	Principle & Equipment Used • Film Interpretation Basics • Radiation Safety
	Considerations • Acceptance Criteria in Codes
0930 - 0945	Break
	Ultrasonic Testing (UT)
0945 - 1100	Sound Wave Principles • Equipment Calibration • Weld Defect Detection •
	Interpretation of UT Results
	Magnetic Particle Testing (MT)
1100 – 1230	Principle & Magnetization Methods • Suitable Materials & Applications •
	Defect Visibility & Interpretation • Acceptance Criteria
1230 – 1245	Break
	Dye Penetrant Testing (PT)
1245 - 1330	Surface-Breaking Defect Detection • Application Process Steps • Advantages &
	Limitations • Interpretation of Indications
	NDT Reporting & Acceptance Criteria
1330 – 1345	NDT Result Documentation • Evaluating Results per Applicable Code •
	Communicating with NDT Technicians • Case Examples from Industry
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Dav 4

Day 4	
0730 – 0830	Heat Treatment Purpose of Heat Treatment in Welding • Types: Preheat, Post-Weld Heat Treatment (PWHT) • Metallurgical Effects of Heat Treatment • Applicable Codes & Standards
0830 - 0930	Preheating in Welding Reasons for Preheating • Methods: Flame, Electrical, Induction • Measuring Preheat Temperature • Controlling Preheat Uniformity

0930 - 0945	Break
0945 - 1100	Post-Weld Heat Treatment (PWHT)
	Purpose & Benefits • Soak Temperature & Holding Time Requirements • Cooling Rate Control • Monitoring & Recording
	Heat Treatment Equipment
1100 - 1230	Electrical Resistance Heating Systems • Induction Heating Equipment • Thermocouples & Temperature Control Units • Insulation Materials & Safety
	Precautions
1230 - 1245	Break
	Heat Treatment Procedures
1245 - 1330	Developing a Heat Treatment Procedure • Compliance with ASME & API
	Requirements • Pre- and Post-Treatment Inspection • Documentation & Records
	Common Heat Treatment Problems & Solutions
1330 - 1345	Uneven Heating • Overheating & Metallurgical Damage • Thermocouple
	Placement Errors • Case Studies on Corrective Measures
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

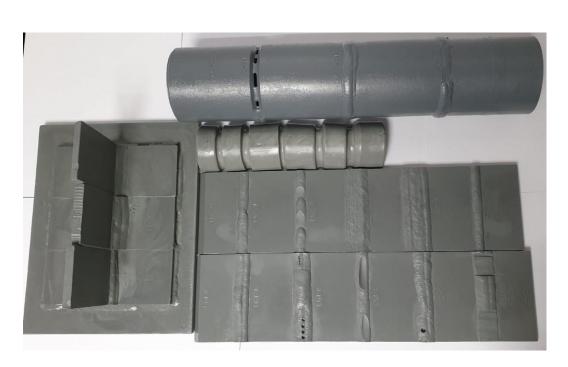
Day 5

Day 5	
0730 - 0930	Weld Procedure Qualification
	Steps in Qualifying a WPS • Test Coupon Preparation • Mechanical Testing
	Requirements • Acceptance per Applicable Code
0930 - 0945	Break
	Inspector's Role in Welding Quality Control
0945 - 1030	QC versus QA in Welding Projects • Inspection Hold Points & Witness Points •
	Liaising with Clients & Contractors • Preventive Action Measures
	Heat Treatment Quality Verification
1030 - 1130	Reviewing Temperature Charts • Verifying Soak Times & Rates • Acceptance
	Criteria Compliance • Documentation Review
	Case Studies & Problem Solving
1130 - 1230	Real Inspection & Heat Treatment Challenges • Root Cause Analysis of Weld
	Failures • Corrective & Preventive Actions • Lessons Learned
1230 - 1245	Break
	Practical Workshop
1245 - 1300	Conducting Visual Inspection on Sample Welds • Performing Hardness Checks
1243 - 1300	Post-Heat Treatment • Reviewing Mock Inspection Reports • Hands-On Use of
	Inspection Tools
1300 – 1315	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1315 - 1415	COMPETENCY EXAM
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout welding inspection using the "AWS Tool Kit" and "Structural Weld Replica Kit", suitable for classroom training.

AWS Tool Kit



Structural Weld Replica Kit

<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

