

COURSE OVERVIEW PE0605 Ammonia Manufacturing & Process Troubleshooting

O CEUS (30 PDHs)

AWAR

Course Title

Ammonia Manufacturing & Process Troubleshooting

Course Date/Venue

January 05-09, 2025/Club B Meeting Room, Ramada Plaza by Wyndham Istanbul City Center, Istanbul, Turkey

Course Reference PE0605

Course Duration/Credits Five days/3.0CEUs/30 PDHS

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Ammonia is one of the most important inorganic basic chemicals, not only for the manufacture of fertilizers (85%) but also for the production of plastics, fibers, explosives, and intermediates for dyes and pharmaceuticals. It is an essential reaction component for the synthesis of numerous organic chemicals used as solvents and intermediates.

This course provides an up-to-date overview of the product properties, synthesis and reaction mechanisms, including catalysis and commercial catalysts, modern production technology for different feedstock's, quality specifications and environmental health and safety aspects, uses and economic data of this important commodity chemical.

The course also presents the perspectives of future developments of commercial ammonia production. Chemical engineers, process engineers and chemists in industry, engineering companies, catalyst manufacturers, equipment makers and chemical engineering university departments will certainly profit from this course.

PE0605 - Page 1 of 7

PE0605-01-25|Rev.65|08 October 2024

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a good working knowledge on ammonia manufacturing and process troubleshooting
- Identify the fundamentals of the synthesis reaction and physical properties of ammonia
- Carryout process steps of ammonia production and ammonia synthesis
- Describe the complete ammonia production plants, steam reforming ammonia plants and ammonia plants based on partial oxidation
- Explain the modernization of older plants (revamping) and also their objectives and revamping options
- Classify the integration of other process into an ammonia plant
- Outline the material considerations for equipment fabrication
- Recognize the storage, shipping and transportation of ammonia
- Specify the various quality and analysis of ammonia
- Discuss the environmental, safety and health aspects of production and handling ammonia, including its safety, health features and toxicity of ammonia
- Determine the diverse chemical reactions and uses of ammonia
- Identify the different economic aspects capacity and production, feedstock choice, capital demand of ammonia production and other production cost factors for various geographical locations
- Recognize the future perspectives and other nitrogen fixation methods for the future

Who Should Attend

This course covers systematic techniques and methodologies on ammonia manufacturing and process troubleshooting for engineers and other technical staff working in the ammonia industry, particularly those who have recently assigned new responsibilities to increase their technical knowledge in ammonia production and for experienced engineers to become better acquainted with new technologies in the industry. The course will help to improve the participants skills and broaden their vision and understanding of the entire industry including technology, economics, energy, use, safety and environmental stewardship.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

PE0605 - Page 2 of 7

PE0605-01-25|Rev.65|08 October 2024

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0605 - Page 3 of 7

PE0605-01-25|Rev.65|08 October 2024

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:-

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant

Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, **Rotating Equipment** Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polvethvlene. Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site** Engineering Manager, Senior Project Manager, Project Engineering Manager, Construction Manager, Site Manager, Area Manager, Procurement Manager, Factory Manager, Technical Services Manager, Senior Project Engineer, Project Engineer, Assistant Project Manager, Handover Coordinator and Engineering Coordinator from various international companies such as the Fluor Daniel, KBR South Africa, ESKOM, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, Worley Parsons, Lurgi South Africa, Sasol, Foster Wheeler, Bosch & Associates, BCG Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management** (**ILM**) and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

iosh

Course Fee

US\$ 6,000 per Delegate + **VAT**. This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 05 th of January 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction & Historical Development of Ammonia
0930 - 0945	Break
0945 - 1100	<i>Fundamentals of the Synthesis Reaction</i> <i>Physical Properties of Ammonia</i> • <i>Thermodynamic Data of the Reaction</i> • <i>General Aspects</i>
1100 – 1215	<i>Fundamentals of the Synthesis Reaction (cont'd)</i> <i>Mechanism of the Intrinsic Reaction</i> • <i>Kinetics</i> • <i>Catalysts</i>
1215 – 1230	Break
1230 - 1420	Process Steps of Ammonia ProductionSynthesis Gas Production• Carbon Monoxide Shift Conversion• GasPurification
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Monday, 06 th of January 2025
0730 - 0900	Process Steps of Ammonia Production (cont'd)
	<i>Compression</i> • <i>Ammonia Synthesis (Waste-Heat Boilers for High Pressure)</i> •
	Steam Generation
0900 - 0915	Break
0915 – 1100	Complete Ammonia Production Plants
	Steam Reforming Ammonia Plants
1100 – 1230	Complete Ammonia Production Plants (cont'd)
1100 - 1230	Ammonia Plants based on Partial Oxidation
1230 - 1245	Break
1245 – 1420	Modernization of Older Plants
	Revamping Objectives • Revamping Options
1420 – 1430	Recap
1430	Lunch & End of Day Two

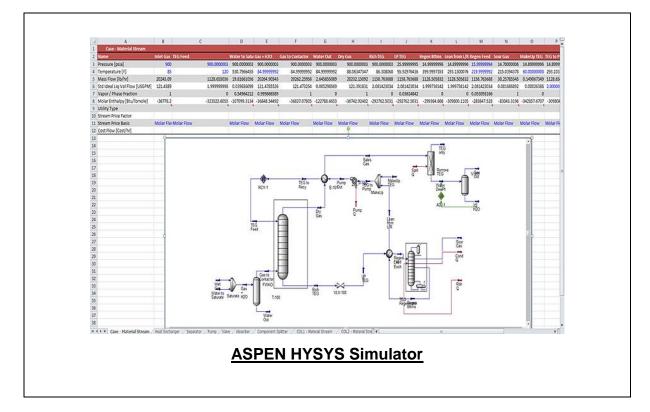
Day 3:	Tuesday, 07 th of January 2025
0730 – 0930	Integration of Other Processes into an Ammonia Plant
0930 - 0945	Break
0945 - 1100	Material Considerations for Equipment Fabrication
	Hydrogen Attack • Nitriding • Temper Embrittlement
1100 - 1215	Material Considerations for Equipment Fabrication (cont'd)
	Metal Dusting • Hydrogen Sulfide Corrosion • Stress Corrosion Cracking
	PE0605 - Page 5 of 7

IA

1215 - 1230	Break
1230 - 1420	Storage & Shipping Storage • Transportation
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4:	Wednesday, 08 th of January 2025
0730 - 0930	Quality Specifications & Analysis
0930 - 0945	Break
0945 - 1100	Environmental, Safety & Health Aspects
	Environmental Aspects of Ammonia Production and Handling • Safety
	Features • Health Aspects and Toxicity of Ammonia
1100 – 1215	Chemical Reactions & Uses of Ammonia
	Reactions of Ammonia
1215 - 1230	Break
1230 - 1420	Chemical Reactions & Uses of Ammonia (cont'd)
	Uses of Ammonia
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Thursday, 09 th of January 2025
0730 - 0930	<i>Economic Aspects</i> <i>Capacity & Production</i> • <i>Feedstock Choice</i> • <i>Capital Demand for Ammonia</i>
	Production Precusioek Choice Cupital Demana for Ammonia Production
0930 - 0945	Break
0945 - 1100	Economic Aspects (cont'd)
	Other Production Cost Factors
1100 1015	Economic Aspects (cont'd)
1100 – 1215	Production Costs for Various Geographical Locations
1215 - 1230	Break
1230 – 1345	Future Perspectives
	Other Nitrogen Fixation Methods for the Future
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course


PE0605 - Page 6 of 7

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0605 - Page 7 of 7

