

COURSE OVERVIEW IE0250 Liquid & Gas Flowmetering & Meter Calibration

Course Title

Liquid & Gas Flowmetering & Meter Calibration

Course Date/Venue

Session 1: April 13-17, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: October 26-30, 2025/Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

IE0250

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide delegates with a detailed and up-to-date overview of fundamentals and practice of liquid and gas flowmetering and meter calibration. lt covers flowmetering. process measurement, measurement of pressure, measurement of temperature and density and flow measurement.

The course will also discuss the fluid mechanics of pipe flows and flowmeter including differential fluid oscillatory pressure type, variable area. flowmeters, rotary inferential meter, electromagnetic flowmeters. positive displacement flowmeters. ultrasonic flowmeters, mass flow measurement and miscellaneous devices.

Flowmeter calibration, flowmeter installation guidance, flowmeter costs, flowmeter selection and proper methodology of quality assurance in accordance with the international standards will also be carried out during the course.

During the course, participants will be able to define and classify the types, terms and problems of multiphase flow measurement; determine the basic concepts of multiphase flows and multiphase flowmeters; distinguish the current main supplier of multiphase flowmeters; select flowmeters properly; and discuss the future development in flow measurement.

Further, participants will acquire the necessary knowledge in order to choose the correct flowmeter for a particular application and will be able to resolve any ensuing problems in relation to unreliability and inaccuracy of flowmeter readings.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge and skills in liquid and gas flowmetering and meter calibration
- Discuss the flowmetering, process measurement, measurement of pressure, measurement of temperature and density and flow measurement
- Explain fluid mechanics of pipe flows and flowmeter including differential pressure type, variable area, fluid oscillatory flowmeters, rotary inferential meter, electromagnetic flowmeters, positive displacement flowmeters, ultrasonic flowmeters, mass flow measurement and miscellaneous devices
- Recognize the flowmeter calibration and flowmeter installation guidance
- Consider the flowmeter costs and employ the proper procedure of flowmeter selection
- Carryout the proper methodology of quality assurance in accordance with the international standards
- Define and classify the types, terms and problems of multiphase flow measurement
- Determine the basic concepts of multiphase flows and multiphase flowmeters
- Distinguish the current main supplier of multiphase flowmeters and select flowmeters properly
- Discuss the future development in flow measurement

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" ($\textbf{H-STK}^{\text{\tiny{\$}}}$). The $\textbf{H-STK}^{\text{\tiny{\$}}}$ consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of liquid and gas flowmetering and meter calibration for instrumentation, inspection, mechanical and process engineers and other technical staff. Further, this course is essential for flowmeter users and suppliers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

BAC British Accreditation Council (BAC)

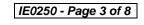
Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.



Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Process Control Instrumentation,

Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit. Moreover, he has vast experience in the field of Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750).

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions such as a **Project Manager**, **Contracts Manager**, **Managing Director**, **Technical Director**, **Divisional Manager**, **Plant Automation Engineer**, **Senior Consulting Engineer**, **Senior Systems Engineer**, **Consulting Engineer**, **Service Engineer** and **Section Leader** from several international companies such as **Philips**, **FEDMIS**, **AEG**, **DAVY International**, **BOSCH** Instrumentation and Control, **Billiton**, **Endress/Hauser**, **Petronet**, **Iscor**, **Spoornet**, **Eskom** and **Afrox**.

Mr. Thoresson is a Registered Professional Engineering Technologist and has a National Higher Diploma (NHD) & a National Diploma in Radio Engineering from the Witwatersrand Technikon. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC).

Training Methodology

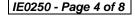
All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos


In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

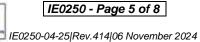
, , .	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Flowmetering Overview
	Introduction to Pipeline Flowmetering with Highlighted Problem Areas
0930 - 0945	Break
	Introduction to Process Measurement
0945 - 1100	Accuracy, Hysteresis, Linearity, Repeatability, Response, Traceability,
	Confidence, Resolution, Calibration, Process Symbols
1100 – 1230	Measurement of Pressure
	Static, Dynamic, Total Pressures, Commercial Pressure Gauges
1230 - 1245	Break
1245 - 1330	Measurement of Temperature and Density
	Commercial Gauges
1330 – 1420	Flow Measurement
	Laminar Flows & Turbulent Flows, Velocity Distributions, Reynolds Number
	Worked Examples, Volume, Mass, Total Flows, Viscosity, Cavitation
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

Day Z	
	Fluid Mechanics of Pipe Flows
0730 - 0930	Fitting Losses • Newtonian & Non-Newtonian Flows • Flowmeter
	Classification • Worked Examples
0930 - 0945	Break
	Flowmeter - Differential Pressure Type
0945 - 1100	Elementary Theory Based on Bernoulli's Equation & Continuity • Orifice
	Meters ● Critical Flow Element ● Laminar Flow Element
	Flowmeter - Differential Pressure Type (cont'd)
1100 1220	Venturi Meters • Flow Nozzles • Low Loss Devices • Variable Orifice Meters
1100 – 1230	• Variable Area Meters • Pitot Tubes & Pitot Static Tubes • Target
	Flowmeters • Drain Holes and Vents
1230 - 1245	Break
1245 - 1420	Flowmeter - Variable Area
	Operating Constraints & Performances, Advantages and Disadvantages
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3

-	
0730 - 0830	Flowmeter - Fluid Oscillatory Flowmeters
	Fluidic Meters • Vortex Shedding Meters • Operating Constraints &
	Performances • Advantages & Disadvantages
0830 - 0930	Flowmeter - Rotary Inferential Meters
	Turbine Flowmeters • Miscellaneous Designs • Advantages & Disadvantages

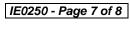


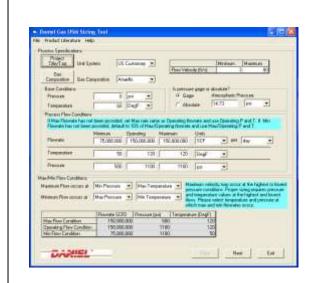
0930 - 0945	Break
0945 - 1100	Flowmeter - Electromagnetic Flowmeters
	Principle of Operation • AC & Pulsed DC Types • Applications &
	Operating Constraints and Performances ● Advantages & Disadvantages
1100 – 1230	Flowmeter - Positive Displacement Flowmeters
	Helical Gear Meter, Nutating Disc Meter, Piston Meter, Rotary Meter,
	Advantages & Disadvantages, Applications, Worked Examples
1230 – 1245	Break
1245 - 1330	Flowmeter - Ultrasonic Flowmeters
	Doppler Type ● Time-of -Flight Type ● Clamp-on Type ● Applications ●
	Advantages & Disadvantages
	Flowmeter - Mass Flow Measurement
1330 – 1420	Coriolis Flowmeters • Hot Wire Anemometer & Thermal Profile Meter •
	Applications ● Advantages & Disadvantages
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

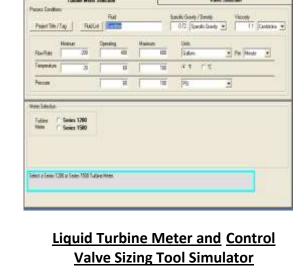
Dav 4

Day 4	
0730 – 0800	Flowmeter - Miscellaneous Devices
	Cross Correlation Methods, Tracer Methods, Weighing Methods Velocity
	Profile Integration Techniques, Laser Doppler Systems
	Flowmeter Calibration
	Gravimetric Methods for Liquid Flowmeters • Volumetric Methods for Liquid
0800 - 0930	Flowmeters • Use of Pipe Provers • Methods for Gas Flowmeters •
	Critical Flow Nozzle • Velocity Traversing Technique • Clamp-on
	Ultrasonic Flowmeter
0930 - 0945	Break
	Flowmeter Installation Guidance
0045 1100	Introduction • Pipe-Flow Disturbances & Other Sources of Error Effects of
0945 – 1100	Installation on Specific Flowmeters • Remedial Actions & Use of Flow
	Conditioners
1100 1145	Flowmeter Costs & Flowmeter Selection
1100 – 1145	Initial Considerations • Flowmeter Selection Procedure • Additional Factors
	Quality Assurance & Standards
1145 - 1230	Traceability & Hard Standards • Flow Standards • UK National
	Measurement Systems • Accreditation Process
1230 - 1245	Break
	Introduction to Multiphase Flow Measurement
1245 - 1420	Description of Multiphase Flows, Definitions of Various Associated Terms,
	Flow Pattern Classification, Flow Regimes, Multiphase Measurement
	Problems, Multiphase Meter Classification
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

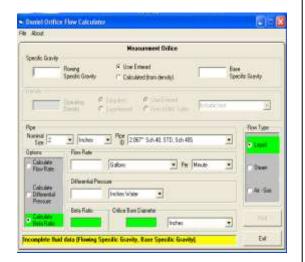

Day J	
	Basic Concepts of Multiphase Flows & Multiphase Flowmeters
0730 – 0930	Response of Single-Phase Flowmeters in Multiphase Flows, Wet Gas Flow
	Measurement, Application of Two Flowmeters for Multiphase Flows
0930 - 0945	Break
0945 - 1100	Current Main Supplier of Multiphase Flowmeters
	Overview of Different Devices & their Limitations/Advantages
	Selection of Flowmeters
1100 - 1230	Classification of Flowmeter Types • Selection Considerations • Installation
	Planning & Installation ● Faults & Failures ● Application Tables
1230 – 1245	Break
1245 – 1345	Future Developments in Flow Measurement
	Flowmeter Developments • Secondary Instrumentation • Signal Acquisition
	& Processing from Single-Phase Flowmeters • Utilization of Unconditioned
	Signals from Single Phase Flowmeters in Multiphase Flows
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course





Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool" and "Orifice Flow Calculator" simulators.



Gas Ultrasonic Meter (USM) Sizing **Tool Simulator**

Liquid Ultrasonic Meter Sizing Tool Simulator

Orifice Flow Calculator Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

