

COURSE OVERVIEW DE1069 Horizontal Drilling Geosteering & Reporting

Course Title

Horizontal Drilling Geosteering & Reporting

Course Date/Venue

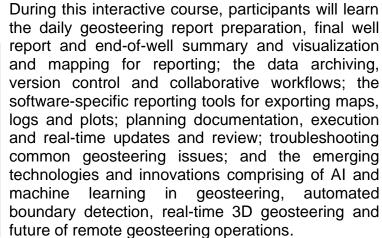
Please see page 3

Course Reference

DE1069

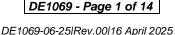
Course Duration/Credits

Five days/3.0 CEUs/30 PDHs



This practical and highly-interactive course includes various practical sessions exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Horizontal Drilling Geosteering & Reporting. It covers the fundamentals of horizontal drilling, directional drilling concepts and geosteering; the lithological and stratigraphic interpretation, real-time data and acquisition systems software geosteering; the pre-drill modeling and planning and geosteering; LWD logs for the interpretation while drilling, geo-targeting and wellbore placement; communicating with rig and operations team: the geological uncertainty. geosteering in unconventional reservoirs navigating faults, folds and complex stratigraphy; and the multi-well pad and geo-spacing strategies, performance optimization and ethical and regulatory aspects.



Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on horizontal drilling geosteering and reporting
- Discuss the fundamentals of horizontal drilling, directional drilling concepts and geosteering
- Carryout lithological and stratigraphic interpretation and recognize real-time data acquisition systems and software tools for geosteering
- Illustrate pre-drill modeling and planning and interpret LWD logs for geosteering
- Apply structural interpretation while drilling, geo-targeting and wellbore placement and communication with the rig and operations team
- Handle geological uncertainty, discuss geosteering in unconventional reservoirs and navigate faults, folds and complex stratigraphy
- Employ multi-well pad and geo-spacing strategies, performance optimization and ethical and regulatory aspects
- Apply daily geosteering report preparation, final well report and end-of-well summary and visualization and mapping for reporting
- Illustrate data archiving and version control as well as collaborative workflows
- Identify software-specific reporting tools for exporting maps, logs and plots
- Review planning documentation and apply execution and real-time updates and review
- Troubleshoot common geosteering issues covering sudden formation loss, LWD sensor failure, discrepancy between logs and cuttings and horizontal section instability
- Discuss the emerging technologies and innovations comprising of AI and machine learning in geosteering, automated boundary detection, real-time 3D geosteering and future of remote geosteering operations

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of horizontal drilling geosteering and reporting for drilling engineers, geosteering engineers, geologists, petrophysicists, reservoir engineers, mud logging engineers, operations and field supervisors and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Date/Venue

Session(s)	Date	Venue
1	June 15-19, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
2	August 04-08, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	October 05-09, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
4	December 08-12, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE1069 - Page 3 of 14

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

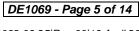
Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, is a Senior Petroleum Engineer with over 30 years of international experience within the **onshore** and **offshore oil** & **gas** industry. His wide experience covers Asset Management Principles, Risks & Economics, Petroleum Economics, Decision Analytic Modelling Methods for Economic Evaluation, Probabilistic Risk Analysis (Monte Carlo Simulator) Risk Analysis Foundations. Global Oil Demand, Crude Oil Market, Global Oil Reserves, Oil Supply & Demand, Governmental Legislation, Contractual Agreements, Financial Modeling, Oil Contracts, Project Risk Analysis, Feasibility Analysis Techniques, Capital Operational Costs, Oil & Gas Exploration Methods, Reservoir Evaluation, Extraction

of Oil & Gas, Crude Oil Types & Specifications, Sulphur, Sour Natural Gas, Natural Gas Sweeting, Petroleum Production, Field Layout, Production Techniques & Control, Surface Production Operations, Oil Processing, Oil Transportation-Methods, Flowmetering & Custody Transfer and Oil Refinery. Further, he is also well-versed in Enhanced Oil Recovery (EOR), Electrical Submersible Pumps (ESP), Oil Industries Orientation, Geophysics, Cased Hole Formation Evaluation, Cased Hole Applications, Cased Hole Logs, Production Operations, Production Management, Perforating Methods & Design, Perforating Operations, Fishing Operations, Well & Reservoir Testing, Reservoir Stimulation, Hydraulic Fracturing, Carbonate Acidizing, Sandstone Acidizing, Drilling Fluids Technology, Drilling Operations, Directional Drilling, Artificial Lift, Gas Lift Design, Gas Lift Operations, Petroleum Business, Field Development Planning, Gas Lift Valve Changing & Installation, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Rig Sizing, Hole Cleaning & Logging, Well Completion, Servicing and Work-Over Operations, Practical Reservoir Engineering, X-mas Tree & Wellhead Operations, Maintenance & Testing, Advanced Petrophysics/Interpretation of Well Composite, Construction Integrity & Completion, Coiled Tubing Technology, Corrosion Control, Slickline, Wireline & Coil Tubing, Pipeline Pigging, Corrosion Monitoring, Cathodic Protection as well as Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Gas Conditioning & Process Technology, Production Safety and Delusion of Asphalt. Currently, he is the Operations Consultant & the Technical Advisor at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling & petroleum discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

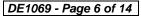

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well-regarded for his process and procedural expertise. Further, he was the Operations Manager at ETP Crude Oil Pipeline Services where he was fully responsible for optimum operations of crude oil pipeline, workover and directional drilling, drilling rigs and equipment, drilling of various geothermal deep wells and exploration wells. Dr. Chris was the Drilling & Workover Manager & Superintendent for Kavala Oil wherein he was responsible for supervision of drilling operations and offshore exploration, quality control of performance of rigs, coiled tubing, crude oil transportation via pipeline and abandonment of well as per the API requirements. He had occupied various key positions as the Drilling Operations Consultant, Site Manager, Branch Manager, Senior Drilling & Workover Manager & Engineer and Drilling & Workover Engineer, Operations Consultant, Technical Advisor in several petroleum companies responsible mainly on an offshore sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a Professor of the Oil Technology College.

Dr. Chris has PhD in Reservoir Engineering and a Master's degree in Drilling & Production Engineering from the Petrol-Gaze Din Ploiesti University. Further, he is a Certified Surfaced BOP Stack Supervisor of IWCF, a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM) and has conducted numerous short courses, seminars and workshops and has published several technical books on Production Logging, Safety Drilling Rigs and Oil Reservoir.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1


Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Fundamentals of Horizontal Drilling Definition & Evolution of Horizontal Wells • Comparison with Vertical & Deviated Drilling • Key Benefits & Limitations • Horizontal Drilling Applications in Various Formations
0930 - 0945	Break
0945 – 1030	Directional Drilling Concepts Terminology (Inclination, Azimuth, Dogleg Severity) • Well Trajectory Design Types • Surveying Techniques & Tools • Magnetic versus Gyroscopic Measurements
1030 - 1130	Basics of Geosteering Purpose & Objectives of Geosteering • Basic Principles & Workflows • Role of Geosteering in Reservoir Exposure • Traditional versus Real-Time Geosteering
1130 – 1215	Lithological & Stratigraphic Interpretation Rock Types & Depositional Environments • Stratigraphic Traps & Lateral Continuity • Gamma Ray Signature Correlation • Mud Log & Cuttings Correlation
1215 - 1230	Break
1230 – 1330	Real-Time Data Acquisition Systems MWD/LWD Overview • Key Measurements Used in Geosteering • Real-Time Data Transmission (Telemetry) • Limitations & Quality Control
1330 – 1420	Software Tools for Geosteering Overview of Industry-Standard Software (e.g., StarSteer, Rogii, Geographix) • Real-Time Data Visualization & Integration • Formation Top Mapping • Software versus Manual Interpretation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Pre-Drill Modeling & Planning
0730 - 0830	Geological Model Construction • Well Plan Design & Target Window
	Definition • Uncertainty Evaluation • Cross-Section & Map View Creation
	Interpreting LWD Logs for Geosteering
0830 - 0930	Gamma Ray Log Interpretation • Resistivity Tools for Boundary Detection •
	Azimuthal Image Log Analysis • Density/Neutron Porosity Relevance
0930 - 0945	Break
0945 – 1100	Structural Interpretation While Drilling
	Dip Picking Techniques • Fault Identification & Avoidance • Bed Boundary
	Identification • Structural Updates While Drilling
	Geo-Targeting & Wellbore Placement
1100 – 1215	Defining Target Zones (Sweet Spots) • Wellbore Positioning versus Structural
	Model • Target Deviation Handling • Updates to Planned Trajectory

1215 – 1230	Break
1230 – 1330	Communication with the Rig & Operations Team
	Daily Reporting Format & Key Contents • Geosteering Recommendation
	Memos • Communication Protocols with Directional Drillers • Safety & HSE
	Communication
	Case Studies: Successful Geosteering Campaigns
1330 – 1420	Overview of Diverse Geological Settings • Tools & Software Used • Decisions
	Made versus Actual Outcome • Lessons Learned
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3	
0730 - 0830	Handling Geological Uncertainty
	Sources of Uncertainty in Real-Time Operations • Uncertainty in Depth
	Conversion • Confidence Interval Mapping • Use of Probabilistic Models
	Geosteering in Unconventional Reservoirs
0830 - 0930	Tight Gas & Shale Considerations • Horizontal Landing & Navigation •
	Importance of Brittleness & TOC Logs • Fracability Indicators
0930 - 0945	Break
	Navigating Faults, Folds & Complex Stratigraphy
0945 - 1100	Pre-Identification from Seismic & Logs • Real-Time Updates in Faulted
0943 - 1100	Terrains • Strategy for Crossing Faults • Structural Dip Corrections on the
	Fly
	Multi-Well Pad & Geo-Spacing Strategies
1100 – 1215	Planning for Parallel Horizontal Wells • Well Spacing & Drainage Area
1100 - 1213	Considerations • Interference & Communication • Geo-Model Adjustments
	Post-Drilling
1215 – 1230	Break
	Performance Optimization
1230 – 1330	Drilling Efficiency Indicators • ROP versus Geosteering Precision Trade-Off •
	Bit & BHA Optimization • Measuring Success of a Geosteering Campaign
1330 - 1420	Ethical & Regulatory Aspects
	Regulatory Reporting Requirements • Data Integrity & Transparency •
	Environmental Considerations • Anti-Collision & Permit Compliance
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

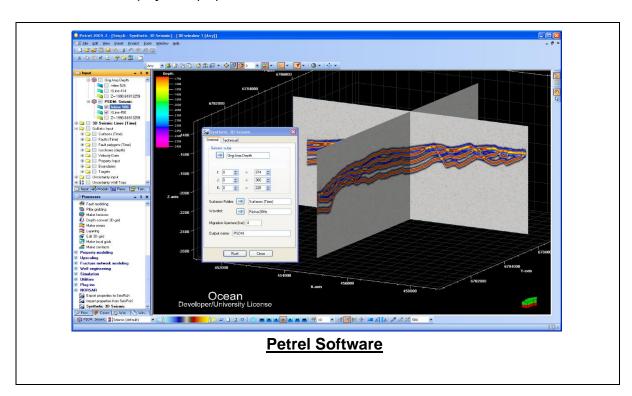
Dav 4

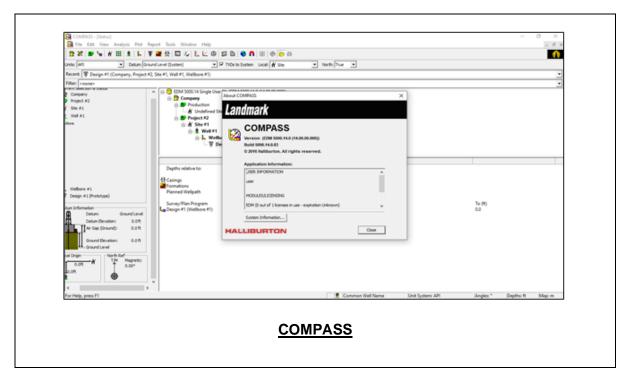
Duy T	
	Daily Geosteering Report Preparation
0730 - 0830	Key Components of a Geosteering Report • Mapping Updates & Interpretations
	• Recommendations & Justifications • Integration of Drilling Data
	Final Well Report & End-of-Well Summary
0830 - 0930	Compilation of All Geosteering Decisions • Graphical Summaries & Cross-
	Sections • Geosteering Kpis & Metrics • Lessons Learned & Best Practices
0930 - 0945	Break

	Visualization & Mapping for Reporting
0945 - 1100	Structural Cross-Sections • Stratigraphic Column Updates • TVD versus MD
	Plots • 3D Visualization Tools
1100 1215	Data Archiving & Version Control
	Standardized Data Formats (e.g., LAS, DLIS) • Version Tracking in Software
1100 – 1215	Platforms • Cloud-Based Geosteering Repositories • Interfacing with Corporate
	Databases
1215 – 1230	Break
1230 – 1330	Collaborative Workflows
	Shared Platforms Between Asset Teams • Role of Remote Operations Centers •
	Multidisciplinary Interpretation & Reviews • Live Interpretation Collaboration
1330 - 1420	Software-Specific Reporting Tools
	Exporting Maps, Logs & Plots • Generating Automated Reports •
	Customizing Templates • Report Validation & Peer Review
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

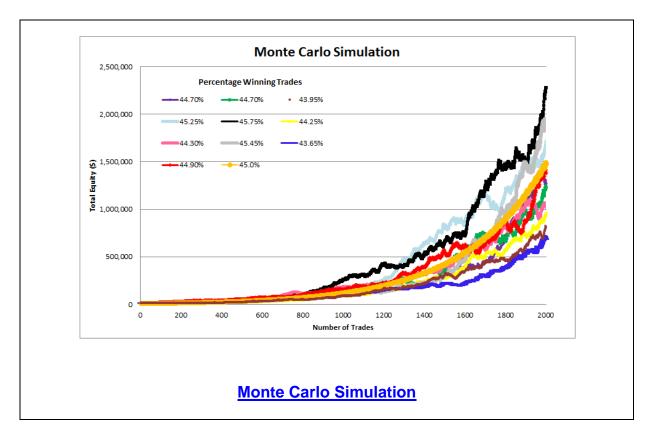
Day 5	
	Live Geosteering Simulation (Part 1)
0730 - 0830	Introducing Real-World Datasets • Interpreting Initial Logs & Models •
	Making Landing Decisions • Adjusting Targets in Real Time
	Live Geosteering Simulation (Part 2)
0830 - 0930	Adjusting to Formation Changes • Logging Interpretation versus Model
	Prediction • Making Sidetrack Decisions • Communicating with the Rig Team
0930 - 0945	Break
	Full Workflow: from Planning to Reporting
0945 - 1100	Review of Planning Documentation • Execution & Real-Time Updates • End-
	Of-Well Reporting Walkthrough • Peer Feedback & Instructor Review
	Troubleshooting Common Geosteering Issues
1100 - 1230	Sudden Formation Loss • LWD Sensor Failure • Discrepancy Between Logs &
	Cuttings • Horizontal Section Instability
1230 - 1245	Break
	Emerging Technologies & Innovations
1245 - 1345	AI & Machine Learning in Geosteering • Automated Boundary Detection •
	Real-Time 3D Geosteering • Future of Remote Geosteering Operations
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

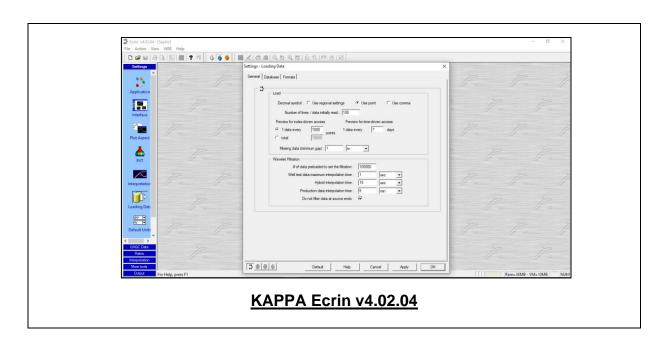


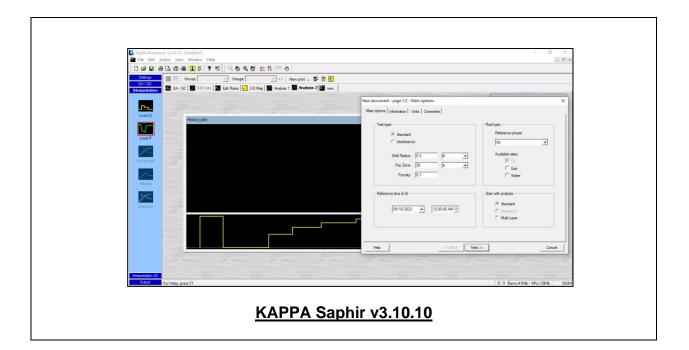


Simulator (Hands-on Practical Sessions)

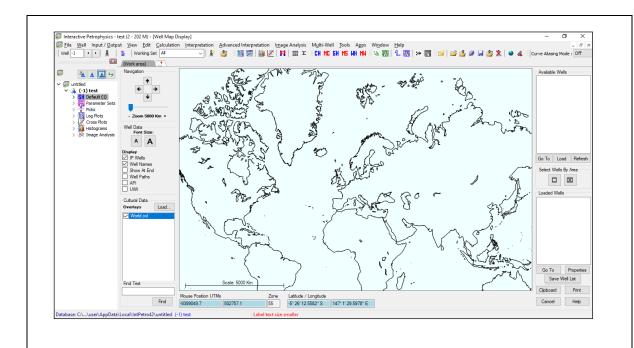
Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Petrel Software", "COMPASS", "Monte Carlo", "KAPPA", "Interactive Petrophysics (IP)", "ECRIN", "PIPESIM" and "PROSPER" software's.

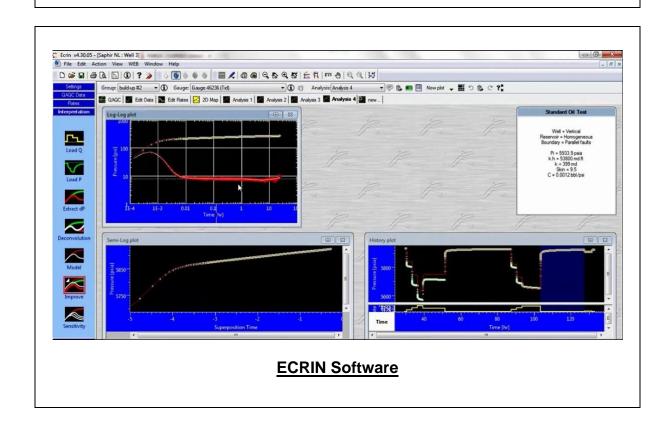




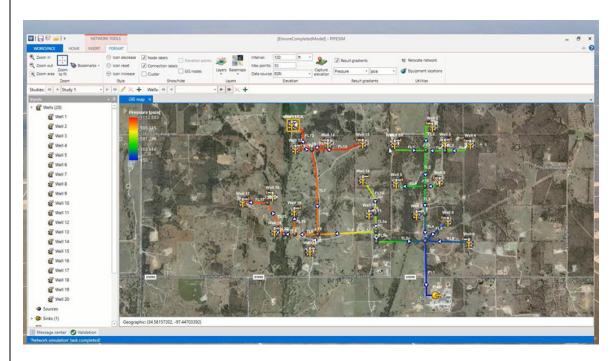






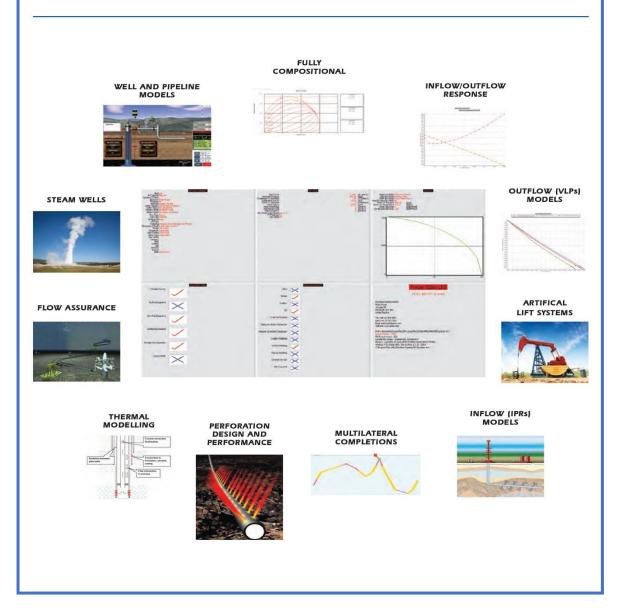


Interactive Petrophysics (IP) Software



Haward Technology Middle East

PIPESIM



PROSPER

MULTIPHASE WELL AND PIPELINE NODAL ANALYSIS

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

