

COURSE OVERVIEW HE1953-4D Risk Assessment in Oil & Gas Industry

Course Title

Risk Assessment in Oil & Gas Industry

Course Date/Venue

Session 2: November 24-27, 2024/Meeting Plus 3-4, City Centre Rotana Doha, Doha, Qatar

(24 PDHs)

AWARD

Course Reference

HE1953-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Risk Assessment in Oil & Gas Industry. It covers the risk management in Gas-to-Liquid (GTL) operations; the importance of risk assessment in production and panel operations; the key concepts of risk and hazard and the types of risks in GTL processes; the regulatory and compliance requirements; the risk identification techniques, the severity and probability of risks assessment; prioritizing risks in production operations; and the risk mitigation strategies, process hazard analysis (PHA) and operational risk management.

Further, the course will also discuss the HAZOP (hazard and operability study) and what-if and failure mode and effect analysis (FMEA) in GTL operations; planning and preparing for process safety incidents; developing and implementing emergency response plans; the human factors and panel operator responsibilities in risk management: aligning risk management operational excellence goals; the continuous improvement in process safety; and the role of automation in risk mitigation and techniques for reducing process-related risks.

During this interactive course, participants will learn the preventive maintenance and techniques for identifying equipment failure risks and preventive measures; the role of safety instrumented systems (SIS) in managing high-risk operations and the basics of SIL (safety integrity level) and its application; the risk communication, reporting and behavioral safety and leadership in risk management; the risk monitoring and tracking, risk auditing and frequency; the types of inspections required in high-risk operations; the incident reporting and investigation, maintaining and updating a risk register and accurate documentation in risk management; developing corrective and preventive actions (CAPAs) in response to identified risks; ensuring continuous improvement in risk mitigation efforts; the advanced risk assessment techniques and risk management in project planning and execution; the emerging technologies in risk management; and the sustainability and environmental risk management, business continuity and crisis management.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply ang gain an in-depth knowledge on risk assessment in oil & gas industry
- Discuss risk management in Gas-to-Liquid (GTL) operations and the importance of risk assessment in production and panel operations
- Identify the key concepts of risk and hazard and the types of risks in GTL processes
- Review regulatory and compliance requirements and apply risk identification techniques
- Assess the severity and probability of risks and prioritize risks in production operations
- Employ risk mitigation strategies, process hazard analysis (PHA) and operational risk management
- Apply HAZOP (hazard and operability study) and what-if and failure mode and effect analysis (FMEA) in GTL operations
- Plan and prepare for process safety incidents as well as develop and implement emergency response plans
- Recognize the human factors and panel operator responsibilities in risk management
- Align risk management with operational excellence goals and apply continuous improvement in process safety
- Discuss the role of automation in risk mitigation and techniques for reducing processrelated risks covering isolation, substitution and engineering controls
- Carryout preventive maintenance and techniques for identifying equipment failure risks and preventive measures
- Interpret the role of safety instrumented systems (SIS) in managing high-risk operations and the basics of SIL (safety integrity level) and its application

- Employ risk communication, reporting and behavioral safety and leadership in risk management
- Apply risk monitoring and tracking, risk auditing and frequency and types of inspections required in high-risk operations
- Carryout incident reporting and investigation, maintaining and updating a risk register and accurate documentation in risk management
- Develop corrective and preventive actions (CAPAs) in response to identified risks and ensure continuous improvement in risk mitigation efforts
- Employ advanced risk assessment techniques and risk management in project planning and execution
- Discuss the emerging technologies in risk management as well as apply sustainability and environmental risk management, business continuity and crisis management

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of risk assessment in oil and gas industry for production supervisors and panel operators.

Course Fee

US\$ 5,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

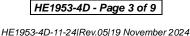
30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.



Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC) BAC

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a Senior Process & Mechanical Engineer with over 25 years of extensive experience within the Oil & Gas, Refinery, Petrochemical & Power industries. His expertise widely covers in the areas of Ammonia Manufacturing & Process Troubleshooting, Distillation Towers, Crude Oil Distillation, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Ammonia Storage & Loading Systems, Ammonia Plant Operation, Troubleshooting & Optimization, Ammonia Recovery, Ammonia Plant Safety, Hazard of Ammonia Handling, Storage & Shipping, Operational Excellence in Ammonia Plants, Fertilizer Storage Management (Ammonia & Urea), Fertilizer Manufacturing Process

Technology, Sulphur Recovery, Phenol Recovery & Extraction, Wax Sweating & Blending, Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Refining Process & Petroleum Products, Refinery Planning & Economics, Safe Refinery Operations. Hydrotreating & Hydro-processing, Separators in Oil & Gas Industry, Gas Testing & Energy Isolations, Gas Liquor Separation, Industrial Liquid Mixing, Wax Bleachers, Extractors, Fractionation, Operation & Control of Distillation, Process of Crude ATM & Vacuum Distillation Unit, Water Purification, Water Transport & Distribution, Steam & Electricity, Flame Arrestors, Coal Processing, Environmental Emission Control, R&D of Wax Blending, Wax Molding/Slabbing, Industrial Drying, Principles, Selection & Design, Process Safety Design, Certified Process Plant Operations, Control & Troubleshooting, Operator Responsibilities, Storage Tanks Operations & Measurements, Tank Design, Construction, Inspection & Maintenance, Atmospheric Tanks, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Performance, Efficiency & Optimization, Continuous Improvement & Benchmarking, Process Troubleshooting Techniques, Oil & Gas Operation/Introduction to Surface Facilities, Pressure Vessel Operation, Plant & Equipment Integrity, Process Equipment Performance & Troubleshooting, Plant Startup & Shutdown, Startup & Shutdown the Plant While Handling Abnormal Conditions, Flare & Relief System, Process Gas Plant Start-up, Commissioning & Problem Solving, Process Liquid and Process Handling & Measuring Equipment, Further, he is also well-versed in Compressors & Turbines Operation, Maintenance & Troubleshooting, Heat Exchanger Overhaul & Testing Techniques, Balancing of Rotating Machinery (BRM), Pipe Stress Analysis, Valves & Actuators Technology, Inspect & Maintain Safeguarding Vent & Relief System, Certified Inspectors for Vehicle & Equipment, Optimizing Equipment Maintenance & Replacement Decisions, Certified Maintenance Planner (CMP), Certified Planning and Scheduling Professional (AACE-PSP), Material Cataloguing, Specifications, Handling & Storage, Steam Trap Design, Operation, Maintenance & Troubleshooting, Steam Trapping & Control, Column, Pump Technology, Pump Selection & Installation, Centrifugal Pumps Troubleshooting, Pumps Design, Selection & Operation, Pump & Exchangers, Troubleshooting & Design, Rotating Equipment Operation & Troubleshooting, Control & ESD System, Detailed Engineering Drawings, Codes & Standards, Budget Preparation, Allocation & Cost Control, Root Cause Analysis (RCA), Production Optimization, Permit to Work (PTW), Project Engineering, Data Analysis, Process Hazard Analysis (PHA), HAZOP Study, Sampling & Analysis, Training Analysis, Job Analysis Techniques, Storage & Handling of Toxic Chemicals & Hazardous Materials, Hazardous Material Classification & Storage/Disposal, Dangerous Goods, Environmental Management System (EMS), Supply Chain, Purchasing, Procurement, Logistics Management & Transport & Warehousing & Inventory, Risk Monitoring Authorized Gas Tester (AGT), Confined Space Entry (CSE), Personal Protective Equipment (PPE), Fire & Gas, First Aid and Occupational Health & Safety.

During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician. Senior Lecturer and Senior Consultant/Trainer for various companies such as the Sasol Ltd... Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a Bachelor's degree in Chemical Engineering and a Diploma in Mechanical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and has delivered various trainings, workshops, seminars, courses and conferences internationally.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 24th of November 2024

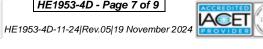
Day 1:	Sunday, 24" of November 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Risk Management in Gas-to-Liquid Operations
0830 - 0900	Introduction to GTL's Risk Management Framework • Importance of Risk
	Assessment in Production & Panel Operations
	Key Concepts of Risk & Hazard
0900 - 0930	Understanding Risks, Hazards, & their Differences • Types of Risks in GTL
	Processes: Operational, Safety, Environmental, & Financial
0930 - 0945	Break
	Regulatory & Compliance Requirements
0945 - 1030	Overview of Qatar's Energy Sector Regulations • Compliance with International
	Safety Standards (ISO, OSHA, etc.)
	Risk Identification Techniques
1030 - 1130	Tools for Identifying Risks in GTL Operations: HAZID, HAZOP, What-If
	Analysis • Case Studies from GTL Plants
	Risk Ranking & Prioritization
1130 – 1215	How to Assess the Severity & Probability of Risks • Methods for Prioritizing
	Risks in Production Operations
1215 – 1230	Break
	Basics of Risk Mitigation Strategies
1230 – 1330	General Approaches for Risk Control & Mitigation • Preventive versus Reactive
	Risk Management
	Understanding Process Hazards
1330 – 1420	Key Hazards in the GTL Process: Gas Handling, High-Pressure Systems etc •
	Sources of Process Hazards & their Implications
1420 – 1430	Recap
1430	Lunch & End of Day One

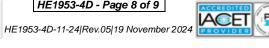
Day 2: Monday, 25th of November 2024

Duy L.	monday, 20 or november 2024
	PHA Tools & Techniques
0730 - 0830	Detailed Exploration of HAZOP (Hazard & Operability Study) • Applying
	What-If & Failure Mode & Effect Analysis (FMEA) in GTL Operations
	Emergency Response & Preparedness
0830 - 0930	Planning & Preparing for Process Safety Incidents • Developing &
	Implementing Emergency Response Plans
0930 - 0945	Break

	Human Factors in Risk Management
0945 – 1100	Role of Human Error in GTL Operational Risks • Improving Decision-Making
	Processes in High-Risk Environments
	Panel Operator Responsibilities in Risk Management
1100 – 1215	Monitoring & Managing Process Parameters to Minimize Risks • Real-Time
	Decision-Making During Critical Operations
1215 - 1230	Break
	Operational Excellence in Risk Management
1230 – 1330	Aligning Risk Management with Operational Excellence Goals • Continuous
	Improvement in Process Safety
	Risk Control Systems
1330 – 1400	Overview of Safety Systems in GTL Plants (Alarms, Shutdowns, Interlocks) •
	The Role of Automation in Risk Mitigation
1400 - 1420	Risk Reduction Methods
	Techniques for Reducing Process-Related Risks: Isolation, Substitution, &
	Engineering Controls • Case Study: Reducing Gas Leakage Risks in Oryx GTL
	Operations
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3. Tuesday, 26th of November 2024

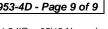

Day 3:	Tuesday, 26 ^u of November 2024
	Preventive Maintenance as a Risk Management Tool
0730 - 0830	Importance of Preventive Maintenance in GTL Risk Management • Techniques
	for Identifying Equipment Failure Risks & Preventive Measures
	Safety Instrumented Systems (SIS)
0830 - 0930	Role of SIS in Managing High-Risk Operations • Basics of SIL (Safety Integrity
	Level) & Its Application
0930 - 0945	Break
	Risk Communication & Reporting
0945 - 1100	Best Practices for Communicating Risks to Management & the Workforce •
	Developing an Effective Risk Reporting System
	Behavioral Safety & Leadership in Risk Management
1100 – 1215	Encouraging a Culture of Safety Among Production Supervisors & Panel
	Operators • Role of Leadership in Fostering Risk Awareness
1215 - 1230	Break
	Risk Monitoring & Tracking
1230 - 1330	Tools & Techniques for Ongoing Risk Monitoring • Key Performance Indicators
	(KPIs) for Risk Management in Production
	Risk Auditing & Inspections
1330 - 1400	How to Conduct Risk Audits in GTL Facilities • Frequency & Types of
	Inspections Required in High-Risk Operations
	Incident Reporting & Investigation
1400 - 1420	Best Practices for Reporting Incidents • Techniques for Root Cause Analysis &
	Lessons Learned from Past Incidents
1420 - 1430	Recap
1430	Lunch & End of Day Three


Day 1. Wodnesday 27th of November 2024

Day 4:	Wednesday, 27 th of November 2024
	Risk Registers & Documentation
0730 - 0800	Maintaining & Updating a Risk Register for GTL Processes • Importance of
	Accurate Documentation in Risk Management
	Corrective & Preventive Actions (CAPA)
0800 - 0830	Developing CAPAs in Response to Identified Risks • Ensuring Continuous
	Improvement in Risk Mitigation Efforts
	Review of Risk Management Case Studies
0830 - 0900	Case Studies of Successful Risk Mitigation Strategies in the GTL Industry •
	Lessons Learned from High-Profile Incidents in Gas-To-Liquids Operations
	Advanced Risk Assessment Techniques
0900 - 0930	Exploring Quantitative Risk Assessment (QRA) & Layer of Protection Analysis
	(LOPA) • Utilizing Advanced Risk Assessment Software Tools
0930 - 0945	Break
	Risk Management in Project Planning & Execution
0945 - 1100	Integrating Risk Management into Project Design & Execution Phases •
	Managing Risks in the Construction & Startup of GTL Facilities
	Emerging Technologies in Risk Management
1100 – 1230	Role of AI, Machine Learning, & IoT in Enhancing Risk Management •
	Predictive Maintenance & Risk Forecasting in GTL
1230 – 1245	Break
	Sustainability & Environmental Risk Management
1245 – 1300	Managing Environmental Risks: Emissions, Spills & Waste Management •
	Regulatory Compliance in Environmental Risk Management
	Business Continuity & Crisis Management
1300 - 1345	Developing Business Continuity Plans for GTL Operations • Crisis
	Management & Recovery Strategies for Major Incidents
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-


<u>Course Coordinator</u>
Reem Dergham, Tel: +974 4423 1327, Email: <u>reem@haward.org</u>

