

COURSE OVERVIEW ME0045 ASME VIII Pressure Vessel Design, Fabrication & Testing (Division 1)

Course Title

ASME VIII Pressure Vessel Design, Fabrication & Testing (Division 1)

Course Date/Venue

Session 1: April 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: October 26-30, 2025/Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

Course Reference

ME0045

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description



This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of ASME Boiler and Pressure Vessel Code Section 8.D.1. It covers the development and significance of ASME BPVC code; the ASME BPVC Section VIII Divisions 1, 2, and 3; the scope and applicability of Division 1; the basic design principles covering materials, design stress and factors of safety; the types of pressure vessels; the categories, configurations and their specific considerations; the material specifications, allowable stress values and sourcing of pressure vessel; and the shells under internal pressure, heads and formed sections and opening and reinforcements around nozzles, manways and other penetrations.

course will also discuss the Further, the welding considerations, processes, joint efficiencies and material compatibility; the effects of vacuum and external loads and their design implications; the post-weld heat treatment, stress relieving and other necessary procedures; the examination and inspection techniques radiography, ultrasonic testing and other non-destructive tests; the pressure testing procedures, certification and stamping, and the compilation of proper documentation and manufacturer's data reports.

During this interactive course, participants will learn the welding documentation and qualifications; the special service requirements, considerations of external loads and usage of appendices in Division 1; the bolting, gasket selection and design as per ASME standards; the popular software tools and their applicability; comparing Division 2 and 3 and their differences in design rules, materials and inspection requirements; keep updated with the latest code revisions; the pressure vessel repairs and alterations within the ASME standards; integrating with other ASME sections.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on ASME boiler and pressure vessel code Section 8.D.1
- Discuss the development and significance of ASME BPVC code as well as the ASME BPVC Section VIII Divisions 1, 2, and 3
- Explain the scope and applicability of Division 1 including the basic design principles covering materials, design stress and factors of safety
- Identify the types of pressure vessels as well as the categories, configurations and their specific considerations
- Recognize the material specifications, allowable stress values and sourcing of pressure vessel
- Design shells under internal pressure, heads and formed sections and opening and reinforcements around nozzles, manways and other penetrations
- Apply welding considerations, processes, joint efficiencies and material compatibility
- Recognize the effects of vacuum and external loads and their design implications
- Employ post-weld heat treatment, stress relieving and other necessary procedures
- Implement examination and inspection techniques covering radiography, ultrasonic testing and other non-destructive tests
- Apply pressure testing procedures, certification and stamping and compilation of proper documentation and manufacturer's data reports
- Review welding documentation and qualifications and identify special service requirements, considerations of external loads and usage of appendices in Division
- Discuss bolting, gasket selection and design as per ASME standards and identify the popular software tools and their applicability
- Compare Division 2 and 3 and their differences in design rules, materials and inspection requirements
- Keep updated with the latest code revisions, carryout pressure vessel repairs and alterations within the ASME Standards and integrate with other ASME sections

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet

Who Should Attend

This course provides an overview of all significant aspects and considerations of ASME VIII pressure vessel for those who are involved in the design, fabrication and testing of pressure vessels and for engineers who want to know more or move to this very interesting engineering area. Further, engineers involved in maintenance, repair and flaw evaluation of pressure vessels will also have a need for this course.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Luis Manuel is a Senior Mechanical and Pipeline & Piping **Engineer** with over **30 years** of extensive and practical experience within the Oil, Gas, Petrochemical, Petroleum and Power industries. His expertise includes Flanges, Hydraulic, Boilers, Pressure Vessels, Tanks, Pipelines, Piping System (ASME B31, API 579 & API 580) and ASME Post Construction Code, Inspection Planning. Further, his wide experience covers Rotating & Static Equipment such as pumps, valves, compressors,

turbines, blowers, fans, pipes, piping, pressure vessels and heat exchangers, Maintenance & Reliability Management, Offshore Structure Engineering, Risk-Based Inspection (RBI), Integrity Assessment, Forensic Analysis, Structural Analysis, Design & Engineering, Naval Architecture, Regulatory Compliance Inspections, Stress & Fatigue Analysis using SACS or StruCad and Finite Element Analysis. He was the Chief Engineer of a leading international engineering firm where he led all Piping Engineering and Pipeline Projects for Total-ELF, Shell, Mobil, Fitness-for-Service (FFS) (API 579). Design, Inspection, Repair, Maintenance, Alteration and Reconstruction of Steel Storage Tanks (API-653), Positive Material Identification (API RP 578), Pressure Equipment and Pressure Vessels (ASME VIII & API-510); Detailed Engineering Drawings, Codes & Standards: P&ID Reading, Interpretation & Developing; the Welding, Design, Fabrication, Manufacturing, Project Management, Installation, Materials Selection, Quality Assurance, Quality Control, Inspection, Repair and Maintenance of Gas Process Trains, Pressure Vessels, Storage Tanks, Pipelines and Process Piping Systems (ASME B31.3 & API-570); ASNT (Non-destructive Testing) Radiographic Testing, Ultrasonic Testing, Magnetic Particle Testing, Liquid Penetrant Testing, and Visual Test.

During his career life, Mr. Manuel has gained his thorough practical experience in multiple engineering disciplines that includes pipeline/piping inspection and engineering, mechanical maintenance, naval engineering, container cargo lashing, aerospace engineering and offshore structural engineering (oil and gas exploration platforms) through several challenging positions such as the Senior Pipelines Engineer, Senior Piping Engineer, Senior & Lead Structural Engineer, Staff Engineer, Naval Architect and Applications Engineer for various international companies including Chevron, ExxonMobil, Addax Petroleum, ZAGOC, NASSCO, DWC, Point Engineering, US ARMY, W.S. & Atkins, Atlas Engineering, Heerema Offshore, Casbarian Engineering Associates (CEA), Textron Marine, Shipbuilding and Peck & Hale. Further, he has been heavily involved in the development of fabrication and erection drawings for offshore structures including installation and rigging as well as in the instruction materials as authorized by EDI (Engineering Dynamic Incorporated) for the training of engineers on the Structural Analysis Computer System (SACS) software.

Mr. Manuel has a Bachelor's degree in Mechanical Engineering from the State University New York. Further. he Certified Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), a Certified Instructor/Trainer and the author of the book "Offshore Platforms Design" and the "SACS Software Training Module".

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Course Introduction & Objectives
	Overview, Goals & Expected Outcomes
0930 - 0945	Break
0945 - 1030	History & Evolution of the ASME BPVC
	The Need, Development & Significance of The Code
1020 1120	Overview of ASME BPVC Section VIII
1030 – 1130	<i>Introduction to Divisions 1, 2 & 3</i>
1130 – 1215	Scope & Applicability of Division 1
	Defining the Boundaries of D.1 – which Vessels it Covers & Doesn't
1215 - 1230	Break
1230 – 1330	Basic Design Principles
	Materials, Design Stress & Factors of Safety
1330 – 1400	Types of Pressure Vessels Covered
	Categories, Configurations & their Specific Considerations
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

Materials for Pressure Vessels Material Specifications, Allowable Stress Values & Sourcing
Design of Shells Under Internal Pressure
Calculations, Thickness Determinations & Joint Efficiencies
Break
Design of Heads & Formed Sections
Types of Heads, their Design Parameters & Considerations
Opening & Reinforcements
Design around Nozzles, Manways & Other Penetrations
Break
Welding Considerations
Welding Processes, Joint Efficiencies & Material Compatibility
External Pressure Design & Considerations
Effects of Vacuum & External Loads & their Design Implications
Recap
Lunch & End of Day Two

Day 3

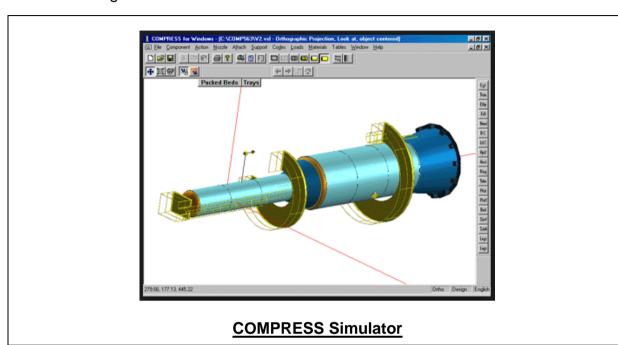
Heat Treatment Requirements
Post-Weld Heat Treatment, Stress Relieving & Other Necessary Procedures
Examination & Inspection Techniques
Radiography, Ultrasonic Testing & Other Non-Destructive Tests
Break
Pressure Testing Procedures
Hydrostatic & Pneumatic Tests, Their Safety Protocols & Execution
Certification & Stamping
U-Stamp, R-Stamp & Other Applicable Certifications
Break
Documentation & Manufacturer's Data Reports
Importance & Compilation of Proper Documentation
Welding Documentation & Qualifications
WPS, PQR & Welder Qualifications as per ASME Standards
Recap
Lunch & End of Day Three

Day 4

Special Service Requirements
Considerations for Vessels in Cyclic or Hazardous Services
Considerations for External Loads
Effects of Wind, Seismic Activity & Other External Forces
Break
Use of Appendices in Division 1
Importance, Interpretations & Specific Cases
Flange & Gasket Design
Bolting, Gasket Selection & Design as per ASME Standards
Break
Use of Software in Design & Analysis
Popular Software Tools & their Applicability
Case Study: Pressure Vessel Failure Analysis
Real-World Failure Cases, Lessons Learned & the Role of ASME Standards
Recap
Lunch & End of Day Four

Day 5

Day 5	
0830 - 0930	Comparison with Division 2 & 3
	Differences in Design Rules, Materials & Inspection Requirements
0930 - 0945	Break
0945 – 1130	Recent Updates & Amendments
	Staying Updated with the Latest Code Revisions
1130 – 1230	Pressure Vessel Repairs & Alterations
	How Repairs are Addressed within the ASME Standards
1230 - 1245	Break
1245 – 1345	Integration with Other ASME Sections
	Relation with other Sections Like Piping, B31 Codes, etc.
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art "COMPRESS" simulator.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

