

COURSE OVERVIEW IE1113 SIL/SCE Instruments Selection

Course Title

SIL/SCE Instruments Selection

Course Date/Venue

September 08-12, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

O CEUS

(30 PDHs)

Course Reference IE1113

AWAR **Course Duration/Credits** Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes practical sessions and exercises. Theory learnt will be applied using our state-ofthe-art simulators.

This course is designed to provide participants with a detailed and up-to-date knowledge of SIL/SCE Instruments Selection. It covers the functional safety, safety instrumented functions (SIF) and SIS, safety integrity levels (SIL) and safety critical elements (SCEs); the IEC 61508 and IEC 61511 standards, regulatory and industry context, hazard and risk assessment (H&RA), layers of protection (LOPA) and safetv analvsis requirements specification (SRS); the SIF demand mode and architecture and the functional safety assessment (FSA) and interfaces with BPCS and other systems.

During the course, participants will be able to the general considerations in instrument selection, pressure. level, temperature instruments. flow instruments for SIL applications and position, proximity and speed sensors; the selection criteria for field instruments, instrument certification and documentation, final elements in SIF design and final element reliability and testing; the logic solvers of PLCs and safety controllers, interface between instruments and logic solvers, digital communication in SIS and the integration of instruments with asset management; the SIL verification calculations, proof testing of SIL instruments, functional safetv management (FSM) and auditing and functional safety assessments.

SE0462 - Page 1 of 10

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on SIL/SCE instruments selection
- Discuss functional safety, safety instrumented functions (SIF) and SIS, safety integrity levels (SIL) and safety critical elements (SCEs)
- Explain IEC 61508 and IEC 61511 standards, regulatory and industry context, hazard and risk assessment (H&RA), layers of protection analysis (LOPA) and safety requirements specification (SRS)
- Determine SIF demand mode and architecture and explain the functional safety assessment (FSA) and interfaces with BPCS and other systems
- Identify the general considerations in instrument selection, pressure, level, temperature instruments, flow instruments for SIL applications and position, proximity and speed sensors
- Determine the selection criteria for field instruments, instrument certification and documentation, final elements in SIF design and final element reliability and testing
- Analyze logic solvers of PLCs and safety controllers, interface between instruments and logic solvers, digital communication in SIS and the integration of instruments with asset management
- Discuss SIL verification calculations, proof testing of SIL instruments, functional safety management (FSM) and auditing and functional safety assessments

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of SIL/SCE instruments selection for instrumentation engineers, control system engineers, safety engineers, process engineers, automation engineers, electrical engineers (involved in SIS design), project engineers (involved in feed or EPC stages), maintenance engineers (responsible for SIS and SCE), engineering consultants, system integrators, HAZOP/LOPA facilitators, technical safety engineers, operations engineers (familiar with plant critical safety systems), instrumentation technicians (with advanced roles) and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

SE0462 - Page 2 of 10

Course certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in gualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

<u>Course Fee</u>

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

SE0462 - Page 3 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 30 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization Process hiahlv evolves in Control Instrumentation. Process Instrumentation & Control. Process Control. Instrumentation. Troubleshooting & Problem Solving, Instrumentation Engineering, Process Control (PCI) & Safeguarding, Instrument Calibration & Maintenance,

Instrumented Safety Systems, High Integrity Protection Systems (HIPS), Process Controller, Control Loop & Valve Tuning, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System - Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD), Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification. Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Gas Measurement, Flowmetering & Custody Measurement, Multiphase Control. Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750). Further, he is also well-versed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the Projects Manager wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the Contracts & Projects Manager, Managing Director, Technical Director, Divisional Manager, Plant Automation Engineer, Senior Consulting Engineer, Senior Systems Engineer, Consulting Engineer, Service Engineer and Section Leader from several international companies such as Philips, FEDMIS, AEG, DAVY International, BOSCH, Billiton and Endress/Hauser.

Mr. Thoresson is a **Registered Professional Engineering Technologist** and has a **Bachelor's** degree in **Electrical & Electronics Engineering** and a **National Diploma** in **Radio Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops

SE0462 - Page 4 of 10

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 08 th of September 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Overview of Functional Safety
0830 - 0930	What is Functional Safety? • Relationship with Process Safety & Asset Integrity • Safety Lifecycle Overview (IEC 61508 / IEC 61511) • Basic Terminology: SIF, SIS, SRS
0930 - 0945	Break
	Safety Instrumented Functions (SIF) & SIS
0945 - 1030	Definition & Role of SIFs • SIS Architecture & Components (Sensor, Logic Solver, Final Element) • Differences Between Basic Process Control System (BPCS) & SIS • Independent Protection Layers (IPLs) & LOPA Relationship
	Safety Integrity Levels (SIL) Explained
1030 - 1130	SIL 1–4: Definitions & Targets • Probability of Failure on Demand (PFDavg) • Risk Reduction Factor (RRF) • Quantitative versus Qualitative SIL Methods
	Safety Critical Elements (SCEs) Overview
1130 – 1215	Definition of SCEs in Safety Case Regime • Examples in Offshore/Onshore Processing • Integrity Management of SCEs • Relationship to SIF Instruments
1215 - 1230	Break
	IEC 61508 & IEC 61511 Standards
1230 - 1330	Scope & Structure of Each Standard • Differences Between Equipment & Application Standards • Compliance & Certification Requirements • SIL Determination & Verification Workflows
	Regulatory & Industry Context
1330 - 1420	Compliance in High Hazard Industries • Role of Regulatory Bodies (HSE, OSHA, API RP 14C, etc.) • Case Study of Failures Due to Poor SIL Compliance • Corporate Governance & FS Management
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

SE0462 - Page 5 of 10

Haward Technology Middle East

Day 2:	Monday, 09 th of September 2025
-	Hazard & Risk Assessment (H&RA)
0730 - 0830	HAZOP Integration with SIL • Risk Graph, Risk Matrix & LOPA
	Identifying Causes, Consequences & Safeguards • When to Assign a SIF
	Layers of Protection Analysis (LOPA)
0830 - 0930	Initiating Event Frequency • Enabling Conditions & Independent Layers • SII
	Necessity & Target SIL • Common LOPA Tools & Templates
0930 - 0945	Break
	Safety Requirements Specification (SRS)
0945 - 1100	Key Contents of SRS for SIFs • Functional & Safety Integrity Requirements
0945 - 1100	Environmental, Diagnostic & Response Time Specs • Writing Clear &
	Auditable SRS Documents
	Determining SIF Demand Mode & Architecture
1100 – 1215	Low versus High Demand Mode • 1001, 1002, 2003 Architectures Explained
	Redundancy & Fault Tolerance • Benefits & Drawbacks of Architectures
1215 – 1230	Break
	Functional Safety Assessment (FSA) Phases
1220 1220	FSA Stages 1 to 5 • Objectives & Timing Across Lifecycle • Role of
1230 – 1330	Independence & Evidence Gathering • Documentation & Closur
	Requirements
	Interfaces with BPCS & Other Systems
1220 1420	Safe Separation of BPCS & SIS • Communication Between SIS &
1330 – 1420	SCADA/DCS • Cybersecurity for SIS Components • Alarms versus Trips
	Functional Separation
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about th
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to b
	Discussed Tomorrow
1430	Lunch & End of Day Two
ov 2:	Tuesday 10th of Sontamber 2025
ay 3:	Tuesday, 10 th of September 2025 General Considerations in Instrument Selection
	Safety versus Operational Instruments • Certified versus Proven-In-Us
0730 - 0830	Instruments • Environmental, Process & Installation Conditions • Accuracy
	Response Time, Repeatability Requirements
	Pressure, Level, Temperature Instruments
	SIL-Certified Pressure Transmitters (dP, Gauge, Absolute) • SIL-Rated Level
0830 - 0930	
	Devices (Radar, Ultrasonic, Guided Wave) • Temperature Elements (RTE
0020 0045	<i>Thermocouple) & Transmitters</i> • <i>Common Failure Modes & Suitability</i>
0930 - 0945	Break
0945 – 1100	Flow Instruments for SIL Applications
	Magnetic, Ultrasonic, Coriolis, Vortex & Orifice Types • Criteria for SI.
	Suitability • Installation Conditions & Failure Risks • Redundancy in Flow
	Measurements
1100 - 1215	Position, Proximity & Speed Sensors
	Use in Valve Position Feedback & Rotating Machinery • Limit Switches
	Proximity Sensors (Inductive, Capacitive) • Mechanical versus Electroni

 1100 – 1213
 Proximity Sensors (Inductive, Capacitive) • Mechanical versus Electronic Reliability • SIL Rating & Testing Intervals

 1215 – 1230
 Break

 Selection Criteria for Field Instruments

 Cofe Field Instruments

1230 – 1330 Safe Failure Fraction (SFF) • Diagnostic Coverage (DC) & Proof Test Interval (PTI) • Failure Modes Effects & Diagnostic Analysis (FMEDA) Reports • Functional Safety Certification versus Site Qualification

FO

SE0462-09-25|Rev.00|22 April 2025

SE0462 - Page 6 of 10

CMI

1330 - 1420	<i>Instrument Certification & Documentation</i> TÜV Rheinland, Exida & Other Certifying Bodies • SIL Certificates & Safety Manuals • Use of Failure Rate Data from OREDA, NAMUR NE 95 • Manufacturer Documentation Review
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 11 th of September 2025
0730 - 0830	Final Elements in SIF Design
	Control Valves, Solenoid Valves, Actuators • ESDVs & Blowdown Valves •
	Pneumatic versus Electric Actuation • Spring Return & Fail-Safe Modes
	Final Element Reliability & Testing
0830 - 0930	Partial Stroke Testing (PST) • Solenoid Valve Failure Modes • Common Cause
	Failure in Final Element Loops • Proof Testing of Valve Assemblies
0930 - 0945	Break
	Logic Solvers of PLCs & Safety Controllers
0945 – 1100	Safety PLC versus Standard PLC • Dual-Processor, Lock-Step Architecture •
0945 - 1100	Response Time & Diagnostic Coverage • Certified Logic Solvers (e.g., Triconex,
	HIMatrix)
	Interface Between Instruments & Logic Solvers
1100 – 1215	4-20 mA Analog Signals versus Digital Protocols • Use of Safety-Rated
1100 - 1215	Barriers & Isolators • Input/Output Diagnostics & Filtering • Redundancy &
	Hot-Swappable Cards
1215 – 1230	Break
	Digital Communication in SIS
1230 – 1330	HART Pass-Through & Safety Implications • PROFIsafe, EtherNet/IP &
1250 - 1550	Other Safety Protocols • Wireless Instrumentation Considerations • Managing
	Latency & Signal Integrity
	Integration of Instruments with Asset Management
1330 - 1420	Online Diagnostics & Condition Monitoring • Predictive Maintenance for
1330 - 1420	SCEs • Integration with CMMS & Safety Lifecycle Tools • Alarm
	Management & Event Logging
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Thursday, 12 ^h of September 2025
0730 - 0830	SIL Verification Calculations
	Probability of Failure on Demand (PFDavg) • Calculation Tools (e.g.,
	ExSILentia, SILcet, OrbitSIL) • Input Data (SFF, ADU, Test Intervals) •
	Examples of Sensor-Loop-Final Element Verification
0830 - 0930	Proof Testing of SIL Instruments
	Proof Test versus Calibration • Test Intervals & Test Coverage • Test
	Procedures & Documentation • Impact on PFDavg & Lifecycle Compliance
0930 - 0945	Break

SE0462 - Page 7 of 10

0945 - 1030	Functional Safety Management (FSM)
	Lifecycle Phases: Planning, Design, Operation, Decommissioning •
	Management of Change (MoC) for SIFs & SCEs • Roles & Competency of
	Responsible Personnel • Record Keeping & Audit Trails
1030 - 1130	Auditing & Functional Safety Assessments
	Internal versus External FSA Process • Audit Checklists for SIL Instruments •
	Common Gaps & Remediation Actions • SIL Compliance in Brownfield
	Upgrades
	Case Studies & Practical Exercises
1130 – 1230	Instrument Failure Leading to SIF Malfunction • Success Story: Cost-Effective
1150 - 1250	SIS Upgrade • SIL Selection for HIPPS, ESD, PSD Systems • Group Exercise:
	Select Instruments for a SIL2 Loop
1230 - 1245	Break
	Course Review, Final Assessment & Certification
1245 - 1345	Summary of Key Learning Points • Quiz or Group-Based SIL Review •
	Participant Feedback & Q&A • Certificate Distribution & Closing Remarks
	Course Conclusion
1345 – 1400	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

SE0462 - Page 8 of 10

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "PHA/HAZOP", "Mindview Software", "Visio Software" and "Safety Automation Builder Software (Rockwell Automation)" simulators.

SE0462 - Page 9 of 10

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

SE0462 - Page 10 of 10

