

COURSE OVERVIEW DE1073 Artificial Lift Technology

<u>Course Title</u> Artificial Lift Technology

Course Reference DE1073

Course Date/Venue Please refer to page 3

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Artificial Lift Technology. It covers the purpose of artificial lift and its applications in oil and gas production; the early artificial lift methods and technological advancements in artificial lift; the fundamentals of reservoir performance, types of artificial lift systems and key performance indicators (KPIs) in artificial lift; the health, safety, and environmental (HSE) considerations, rod lift systems and designing and selecting rod lift systems; the rod lift systems, operational challenges with rod lift systems and performance optimization for rod lift; and the rod lift failures and troubleshooting and design and installation of gas lift systems.

During this interactive course, participants will learn the gas lift systems operation, troubleshooting and maintenance; the economic and environmental aspects of gas lift; the advanced gas lift techniques, electrical submersible pumps and ESP systems design, selection, installation and commissioning; the operational considerations for ESPs, future trends of ESP technology and hydraulic lift systems; the hydraulic lift systems and the emerging artificial lift technologies; the digital technologies in artificial lift systems; and the economic evaluation of artificial lift technologies covering cost-benefit analysis for artificial lift methods, life cycle cost analysis and optimization for minimal downtime.

DE1073 - Page 1 of 15

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on artificial lift technology
- Discuss the purpose of artificial lift and its applications in oil and gas production
- Explain early artificial lift methods and technological advancements in artificial lift
- Identify the fundamentals of reservoir performance, types of artificial lift systems and key performance indicators (KPIs) in artificial lift
- Recognize health, safety, and environmental (HSE) considerations, rod lift systems and designing and selecting rod lift systems
- Install and maintain rod lift systems, discuss operational challenges with rod lift systems and apply performance optimization for rod lift
- Identify rod lift failures and troubleshooting, gas lift systems and design and installation of gas lift systems
- Operate gas lift systems, troubleshoot and maintain gas lift and discuss economic and environmental aspects of gas lift
- Employ advanced gas lift techniques and discuss electrical submersible pumps and design and selection of ESP systems
- Install and commission ESP systems, discuss operational considerations for ESPs and maintain ESP systems
- Discuss the future trends of ESP technology and hydraulic lift systems
- Design and implement hydraulic lift systems and discuss the emerging artificial lift technologies and digital technologies in artificial lift systems
- Apply economic evaluation of artificial lift technologies covering cost-benefit analysis for artificial lift methods, life cycle cost analysis and optimization for minimal downtime

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of artificial lift technology methods for production engineers, reservoir engineers, field operators and technicians, well intervention and completion engineers, asset managers / field development managers, drilling engineers, maintenance and reliability engineers and other technical staff.

DE1073 - Page 2 of 15

Course Date/Venue

Session(s)	Date	Venue
1	June 23-27, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 17-21, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
3	October 13-17, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	December 21-25, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,000 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

DE1073 - Page 3 of 15

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BA**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training
(IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request

DE1073 - Page 4 of 15

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Stan Constantino, MSc, BSc, is a Senior Petroleum & Reservoir Engineer with over 35 years of Offshore & Onshore extensive experience within the Oil, Gas & Petroleum industries. His area of expertise include Reserves & Resources, Reserves Estimation & Uncertainty, Reservoir Characterization, Unconventional Resource & Reserves Evaluation, Oil & Gas Reserves Estimation, Methods for Aggregation of Reserves & Resources, Fractured Reservoir Classification & Evaluation, Sequence Stratigraphy, Petrophysics & Rock Properties, Seismic Technology, Geological Modelling, Water Saturation, Crude Oil & Natural Gas

Demand, Exploration Agreements & Financial Modelling, Seismic Survey Evaluation, Exploration Well Identification, Field Production Operation, Field Development Evaluation, Crude Oil Marketing, Core & Log Data Integration, Core Logging, Advanced Core & Log Integration, Well Logs & Core Analysis, Advanced Petrophysics/Interpretation of Cased Hole Logs, Cased Hole Formation Evaluation, Cased Hole Formation Evaluation, Cased Hole Evaluation, Cased-Hole Logging, Applied Production Logging & Cased Hole & Production Log Evaluation, Cased Hole Logging & Formation Evaluation, Open & Cased Hole Logging, Screening of Oil Reservoirs for Enhanced Oil Recovery, Enhanced Oil Recovery, Enhanced Oil Recovery Techniques, Petroleum Economic Analysis, Oil Industry Orientation, Oil Production & Refining, Crude Oil Market, Global Oil Supply & Demand, Global Oil Reserves, Crude Oil Types & Specifications, Oil Processing, Oil Transportation-Methods, Oil & Gas Exploration and Methods, Oil & Gas Extraction, Technology Usage in Industrial Security; Upstream, Midstream & Downstream Operations; Oil Reservoir Evaluation & Estimation, Oil Supply & Demand, Oil Contracts, Government Legislation & Oil Contractual Agreements, Oil Projects & Their Feasibility (revenue and profitability), Water Flooding, Reservoir Souring & Water Breakthrough, Reservoir Performance Using Classical Methods, Fractured Reservoir Evaluation & Management, Reservoir Surveillance & Management, Reservoir Engineering & Simulation, Reservoir Monitoring, Pressure Transient Testing & Reservoir Performance Evaluation, Reservoir Characterization, Reservoir Engineering Applications with ESP and Heavy Oil, Reservoir Volumetrics, Water Drive Reservoir, Reserve Evaluation, Rock & Fluid Properties, Fluid Flow Mechanics, PVT Analysis, Material Balance, Darcy's Law & Applications, Radial Flow, Gas Well Testing, Natural Water Influx, EOR Methods, Directional Drilling, Drilling Production & Operations, Field Development & Production of Oil & Gas, Wireline Logging, Mud Logging, Cased Hole Logging, Production Logging, Slick Line, Coil Tubing, Exploration Wells Evaluation, Horizontal Wells, Well Surveillance, Well Testing, Design & Analysis, Well Testing & Oil Well Performance, Well Log Interpretation (WLI), Formation Evaluation, Well Workover Supervision, Pressure Transient Analysis and Petrophysical Log Analysis. Currently, he is the CEO & Managing Director of Geo Resources Technology wherein he is responsible in managing the services and providing technical supports to underground energy related projects concerning field development, production, drilling, reservoir engineering and simulation.

Throughout his long career life, Mr. Stan has worked for many international companies such as the Kavala Oil, North Aegean Petroleum Company and Texaco Inc., as the Managing Director, Operations Manager, Technical Trainer, Training Consultant, Petroleum Engineering & Exploration Department Head, Assistant Chief Petroleum Engineer, Reservoir Engineer, Resident Petroleum Engineer, Senior Petroleum Engineer and Petroleum Engineer wherein he has been managing the evaluation of exploration wells, reservoir simulation, development training, production monitoring, wireline logging and well testing including selection and field application of well completion methods.

Mr. Stan has a Master's degree in Petroleum Engineering and a Bachelor's degree in Geology from the New Mexico Institute of Mining & Technology (USA) and from the Aristotelian University (Greece) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership of Management (ILM) and a member of the Society of Petroleum Engineers, USA (SPE), Society of Well Log Professional Analysts, USA (SPWLA) and European Association of Petroleum Geoscientists & Engineers (EAGE). Moreover, Mr. Stan published numerous scientific and technical papers and delivered various trainings, courses and workshops worldwide.

DE1073 - Page 5 of 15

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	Overview of Artificial Lift Definition and Purpose of Artificial Lift • Applications in Oil and Gas Production • Economic Impact of Artificial Lift on Production Rates • Types of Artificial Lift Systems
0930 - 0945	Break
0945 - 1030	<i>History & Evolution of Artificial Lift</i> <i>Early Artificial Lift Methods</i> • <i>Technological Advancements in Artificial Lift</i> • <i>Key Milestones in the Development of Lift Systems</i> • <i>Importance of Continuous</i> <i>Innovation in Artificial Lift</i>
1030 - 1130	<i>Fundamentals of Reservoir Performance</i> <i>Reservoir Pressure and Its Impact on Production</i> • <i>Decline Curves and</i> <i>Production Forecasting</i> • <i>Fluid Properties and Their Effects on Lift Systems</i> • <i>Well Performance Monitoring</i>
1130 - 1215	Types of Artificial Lift Systems Rod Lift Systems • Gas Lift Systems • Electrical Submersible Pumps (ESPs) • Hydraulic Lift Systems
1215 – 1230	Break
1230 - 1330	<i>Key Performance Indicators (KPIs) in Artificial Lift</i> <i>Measuring Pump Efficiency and Performance</i> • <i>Calculating Production Rates</i> <i>and Lift Costs</i> • <i>Analyzing Wellhead Pressures</i> • <i>System Optimization for</i> <i>Maximum Output</i>
1330 - 1420	<i>Health, Safety & Environmental (HSE) Considerations</i> <i>Safety Protocols for Installation and Operation</i> • <i>Environmental Impact of</i> <i>Artificial Lift Systems</i> • <i>Hazard Identification and Risk Assessment</i> • <i>Compliance with Industry Regulations</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2

	Overview of Rod Lift Systems
0730 - 0830	Components of a Rod Lift System • Types of Pumps Used in Rod Lift Systems •
	Operating Principles of Rod Lift • Key Advantages and Challenges
	Designing & Selecting Rod Lift Systems
0830 - 0930	Wellbore Design Considerations • Pump Size and Configuration • Matching
	Rod Lift to Well Conditions • Optimizing Rod Lift Performance
0930 - 0945	Break

	Installation & Maintenance of Rod Lift Systems			
0945 - 1100	Procedures for System Installation • Common Installation Challenges •			
	Maintenance Best Practices • Troubleshooting Common Issues			
	Operational Challenges with Rod Lift Systems			
1100 – 1215	Gas Interference and Its Effects • Equipment Wear and Tear • Handling High-			
	Viscosity Fluids • Pressure and Temperature Limitations			
1215 – 1230	Break			
	Performance Optimization for Rod Lift			
1220 1220	Load Balancing and System Adjustments • Monitoring and Control of Stroke			
1250 - 1550	Lengths • Impact of Surface Equipment on Performance • Case Studies of			
	Performance Optimization			
	Rod Lift Failures & Troubleshooting			
1330 - 1420	Identifying Symptoms of Failure • Common Causes of Rod Lift Failure •			
	Corrective Measures for System Failures • Downtime Reduction Strategies			
1420 1420	Recap			
	Using this Course Overview, the Instructor(s) will Brief Participants about the			
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be			
	Discussed Tomorrow			
1430	Lunch & End of Day Two			

Day 3

	Basics of Gas Lift Systems
0720 0820	Basic Principles of Gas Lift Technology • Gas Lift Components and Their
0730 - 0830	Functions • Types of Gas Lift Systems • Comparison with Other Artificial Lift
	Methods
	Design & Installation of Gas Lift Systems
0020 0020	Wellbore Design for Gas Lift • Selecting Gas Lift Valves and Equipment •
0850 - 0950	Installation Procedures and Considerations • Design Optimization for Gas Lift
	Systems
0930 - 0945	Break
	Operation of Gas Lift Systems
0045 1100	Gas Injection Rates and Optimization • Impact of Gas Supply on System
0945 - 1100	Performance • Handling Varying Gas-Liquid Ratios • Monitoring and
	Controlling Gas Lift Operations
	Gas Lift Troubleshooting & Maintenance
1100 1015	Identifying Under-Performance Issues • Gas Lift Valve Failure and Its Causes
1100 - 1215	• Troubleshooting Gas Injection Problems • Corrective Actions for Gas Lift
	System Failures
1215 – 1230	Break
	Economic & Environmental Aspects of Gas Lift
1220 1220	Cost-Effectiveness of Gas Lift Systems • Environmental Considerations in Gas
1250 - 1550	Lift Operations • Emissions Control and Mitigation • Gas Lift System Life
	Cycle Analysis
	Advanced Gas Lift Techniques
1330 1420	Dual and Multistage Gas Lift Systems • Inflow Control Devices (ICDs) •
1550 - 1420	Hybrid Systems Combining Gas Lift with Other Methods • Future Trends in
	Gas Lift Technology
	Recap
1/20 - 1/30	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1450	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three
	(iosh) (Image 7 of 15)

Day 4				
	Overview of Electrical Submersible Pumps (ESPs)			
0730 – 0830	Working Principles of ESPs • Key Components and Their Functions • Types of			
	ESPs and Their Applications • Advantages and Limitations of ESP Systems			
	Design & Selection of ESP Systems			
0830 - 0930	Well Characteristics for ESP Installation • ESP Sizing and Configuration •			
	Submersible Motor Selection • Impact of Fluid Type and Flow Rates on Design			
0930 - 0945	Break			
	Installation & Commissioning of ESP Systems			
0045 1100	Procedures for ESP Installation • Challenges During Installation •			
0943 - 1100	Commissioning Steps and Performance Checks • Handling Well Conditions			
	During Commissioning			
	Operational Considerations for ESPs			
1100 1215	Monitoring and Controlling ESP Performance • System Efficiency and Energy			
1100 - 1215	Consumption • Impact of Gas and Solids on ESP Performance •			
	Troubleshooting Common ESP Issues			
1215 – 1230	Break			
	Maintenance of ESP Systems			
1220 1220	Scheduled Maintenance Routines • Preventative Maintenance Strategies •			
1250 - 1550	Identifying Early Signs of Equipment Failure • Performance Monitoring and			
	Optimization			
	Future of ESP Technology			
1330 1420	Advancements in ESP Design and Materials • Integration with Real-Time			
1550 - 1420	Monitoring Systems • Trends Towards Higher Efficiency and Longevity • ESP			
	Applications in Unconventional Reservoirs			
	Recap			
1/20 - 1/30	Using this Course Overview, the Instructor(s) will Brief Participants about the			
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be			
	Discussed Tomorrow			
1430	Lunch & End of Day Four			

Day 5

	Hydraulic Lift Systems
0730 – 0830	<i>Basic Principles of Hydraulic Lift</i> • <i>Key Components of Hydraulic Lift Systems</i>
	Applications and Limitations Comparison with Other Lift Systems
	Designing & Implementing Hydraulic Lift Systems
0830 - 0930	Well and Reservoir Considerations for Hydraulic Lift • Pump Selection and
	Configuration • Installation and Commissioning • Performance Monitoring
0930 - 0945	Break
	Emerging Artificial Lift Technologies
0045 1100	Progress in Hybrid Lift Systems • New Technologies in Plunger and Hydraulic
0945 - 1100	Lifts • Integration with Digital and IoT Technologies • Future Trends in
	Artificial Lift
1100 - 1215	Digital Technologies in Artificial Lift Systems
	Real-Time Data Acquisition and Analysis • Automation and Control in
	Artificial Lift Operations • Digital Twins for Lift System Optimization •
	Predictive Maintenance Using AI and Machine Learning
1215 – 1230	Break

DE1073 - Page 8 of 15

aWs

1230 - 1345	<i>Economic Evaluation of Artificial Lift Technologies</i> Cost-Benefit Analysis for Artificial Lift Methods • Life Cycle Cost Analysis • Impact of System Selection on Production Rates • Optimization for Minimal
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about a Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Petrel Software", "COMPASS", "Monte Carlo", "KAPPA", "Interactive Petrophysics (IP)", "ECRIN", "PIPESIM", "Eclipse Software" and "PROSPER" software's.

DE1073 - Page 9 of 15

DE1073 - Page 10 of 15

Settings	Settings - Loading Data	×
Application Application Wrefrice Plot Appert Margeretation For Automation Concerse	Convert Deckerse Format Image: Converting the second section access Prevent for time duran access Image: Converting the second section access Prevent for time duran access Image: Converting the second section access Prevent for time duran access Image: Converting the second section access Prevent for time duran access Image: Converting the second section access Prevent for time duran access Image: Converting the second section access Prevent for time duran access Image: Converting the second section access Image: Converting the second se	R R R R R R R R R R R R R R R R R R R
Interpretation More tools Optimal	Default Help Cancel Apply OK	0.00-26140 VAL-1040 Auto

000000000	? ?!	6¶=0				
CA/QC Group:	Gauge:	+⊥ New pla	ot - 📰 🗊 🖸			
Interpretation	Units Mail Edit Hates Mail 2-0	Map Mar Analysis Mar A	naryana z en new		0	-
- 10				New document - page 1/2 - Main options		×
Load Q	11	15.00	16.00	Main options Information Units Comments		1
1C	ot			Test type:	- Ruid type.	
Load P				G Standard	Reference phase:	
				C Interference	01	
Estant da				Well Radius: [0.3 [ft 💌	Available rates:	
				Pay Zone: 30 ft.	□ Ges	
				Porosity: 0.1	☐ Water	
				- Reference time t=0	- Start with analysis	
					Frandard	
Improve				09/10/2023 • 12:00:00 AM	C Numerical	
					C Multi-Layer	
				Han I writer I have		anal
12	15	15	15			
Interpretation (2)						
Output For Help, press F1					X V Ram=41Mb - MV=10Mb	2

DE1073 - Page 11 of 15

DE1073 - Page 12 of 15

DE1073 - Page 13 of 15

DE1073 - Page 14 of 15

Haward Technology Middle East

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE1073 - Page 15 of 15

