

COURSE OVERVIEW EE1117 PSS/E Stability Analysis

<u>Course Title</u> PSS/E Stability Analysis

Course Date/Venue

- Session 1: May 05-09, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
- Session 2: November 24-28, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

O CEUS

(30 PDHs)

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Power System Simulator for Engineering (PSSE) Stability Analysis. It covers the power system stability, PSSE modules and interfaces including PSSE graphical interface and command line usage; the buses, generators, loads and transmission lines; the transformers, switched shunts. static and dynamic model distinctions, equipment parameter settings and load flow studies in PSSE; and the dynamic data files (DYR), machine models and control systems.

Further, the course will also discuss the load modeling techniques, simulation initialization and validation; the event and disturbance definition and running timedomain simulations; tuning dynamic models for realistic behavior; matching simulated response with real data; the sensitivity to parameter changes and proper documentation and reporting; the transient stability concepts, protection and control coordination and multi-machine system stability; and the application of power system stabilizers (PSS).

EE1117- Page 1 of 9

EE1117-05-25|Rev.01|13 April 2025

During this interactive course, participants will learn the voltage stability analysis, visualizing and reporting stability results and renewable integration and dynamic models; the frequency stability analysis, contingency analysis and stability margins; the FACTS and HVDC systems modeling and model validation using measurement data; the python scripting basics, automating simulations and case setup, batch processing and reporting and custom functions and user-defined tools; and the finetuning system response, stability index trends, impact of network reconfiguration and optimizing control schemes.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on power system simulator for engineering (PSSE) stability analysis
- Discuss power system stability, PSSE modules and interfaces including PSSE graphical interface and command line usage
- Identify buses, generators, loads, and transmission lines, transformers and switched shunts, static and dynamic model distinctions and equipment parameter settings
- Recognize load flow studies in PSSE, dynamic data files (DYR), machine models and control systems
- Apply load modeling techniques, simulation initialization and validation as well as describe event and disturbance definition and running time-domain simulations
- Tune dynamic models for realistic behavior, match simulated response with real data, discuss sensitivity to parameter changes and apply proper documentation and reporting
- Discuss transient stability concepts, protection and control coordination, multimachine system stability and application of power system stabilizers (PSS)
- Carryout voltage stability analysis, visualize and report stability results and illustrate renewable integration and dynamic models
- Apply frequency stability analysis, contingency analysis and stability margins, FACTS and HVDC systems modeling and model validation using measurement data
- Describe python scripting basics, automating simulations and case setup, batch processing and reporting and custom functions and user-defined tools
- Apply fine-tuning system response, evaluate stability index trends, discuss the impact of network reconfiguration and optimize control schemes

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

EE1117- Page 2 of 9

Who Should Attend

This course provides an overview of all significant aspects and considerations of power system simulator for engineering (PSSE) stability analysis for power system engineers, electrical engineers, system planning engineers, grid operation engineers, stability analysis engineers, energy management system (EMS) specialists, utility company engineers, renewable energy integration engineers, project engineers and managers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

EE1117- Page 3 of 9

EE1117-05-25|Rev.01|13 April 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Ahmed El-Sayed, PhD, MSc, BSc, is a Senior Electromechanical Engineer with over 35 years of extensive experience in the Power, Petroleum, Petrochemical and Utilities. He specializes in HV/LV Equipment, High Voltage Electrical Safety, LV & HV Electrical System, HV Equipments Inspection & Maintenance, HV Switchgear Operation & Maintenance, LV Distribution Switchgear & Equipment, HV Switchgear Maintenance, HV/LV Electrical Authorisation, Hazardous Area

Classification, Power Quality, Disturbance Analysis, Blackout, Power Network, Power Distribution, Power Systems Control, Power Systems Security, Power Electronics, ETAP, Electrical Substations, Tariff Design & Structure Analysis, Engineering Drawings, Codes & Standards, P&ID Reading, Interpretation & Developing, PLC, SCADA, DCS, Process Control, Instrumentation, Automation, Power Generation, Process Control Instrumentation, SIS, SIL, ESD, Alarm Management Systems, Fieldbus Systems and Fiber Optics as well as the service pricing of these. Further, he is also well versed in Pumps, Valves, Boilers, Pressure Vessels, Heat Recovery Steam Generators (HRSG), Bearings, Compressors, Motors, Turbines, Actuators, Carbon Footprint, Energy Efficiency, Power Plant Performance & Efficiency, P&ID, Engineering Drawing, Codes & Standards and Hydraulic Systems He is currently the Systems Control Manager of Siemens where he is in-charge of Security & Control of Power Transmission Distribution & High Voltage Systems and he further takes part in the Load Records Evaluation & Transmission Services Pricing.

During his career life, Dr. Ahmed has been actively involved in different Power System Activities including Roles in Power System Planning, Analysis, Engineering, **HV Substation** Design, Electrical Service Pricing, Evaluations & Tariffs, Project Management and also in Teaching and Consulting. His vast industrial experience was honed greatly when he joined many International and National Companies such as **Siemens**, **Electricity Authority** and **ACETO** industries where he focused more on dealing with Technology Transfer, System Integration Process and Improving Localization. He was further greatly involved in manufacturing some of **Power System** and **Control & Instrumentation Components** such as Series of Digital Protection **Relays**, MV **VFD**, **PLC** and **SCADA** System with intelligent features.

Dr. Ahmed is well-versed in different electrical and instrumentation fields like Load Management Concepts, **PLC** Programming, Installation, Operation and Troubleshooting, **AC Drives** Theory, Application and Troubleshooting, Industrial Power Systems Analysis, AC & DC **Motors**, Electric Motor **Protection**, **DCS SCADA**, **Control** and Maintenance Techniques, Industrial Intelligent Control System, Power Quality Standards, Power Generators and Voltage Regulators, Circuit Breaker and Switchgear Application and Testing Techniques, **Transformer** and **Switchgear** Application, Grounding for Industrial and Commercial Assets, Power Quality and Harmonics, Protective Relays (O/C Protection, Line Differential, Bus Bar Protection and Breaker Failure Relay) and Project Management Basics (PMB).

Dr. Ahmed has **PhD**, **Master's & Bachelor's** degree in **Electrical** and **Instrumentation Engineering** from the **University of Wisconsin Madison**, **USA**. Further, he has numerous papers published internationally in the areas of Power Quality, Superconductive Magnetic Energy Storage, SMES role in Power Systems, Power System **Blackout** Analysis, and Intelligent Load Shedding Techniques for preventing Power System Blackouts, HV **Substation Automation** and Power System Stability.

EE1117- Page 4 of 9

EE1117-05-25|Rev.01|13 April 2025

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav	1
Duy	

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Power System Stability Overview
0830 0030	Definition and Classification of Stability (Small Signal, Transient, Voltage) •
0850 - 0950	Rotor Angle and Voltage Stability Concepts • Timescales of Dynamic
	Phenomena • Importance of Stability in Modern Power Systems
0930 - 0945	Break
	Overview of PSSE Software
0045 1020	Introduction to PSSE Modules and Interfaces • Key Features of Dynamics and
0945 - 1050	Stability Simulation • File Structure and Input/Output Conventions •
	Licensing and Installation Basics
	PSSE User Interface & Workflow
1030 1130	PSSE Graphical Interface and Command Line Usage • Navigating Project
1050 - 1150	Setup and Model Loading • Data Import/Export (Raw, DYR, Sav Files) •
	Batch and Interactive Simulation Options
1130 – 1215	Modeling Power System Components
	Buses, Generators, Loads, and Transmission Lines • Transformers and
	Switched Shunts • Static and Dynamic Model Distinctions • Equipment
	Parameter Settings
1215 - 1230	Break

EE1117-05-25|Rev.01|13 April 2025

EE1117- Page 5 of 9

	Load Flow Studies in PSSE
1230 - 1330	Solving the Base Case Power Flow • Slack Bus and Control Options • Using
	Auxiliary Files for Initialization • Troubleshooting Convergence Issues
	Basics of Dynamic Data Files (DYR)
1330 - 1420	Structure and Syntax of DYR Files • Associating Models with Network
	Components • Interpreting Dynamic Records • Preparing for Stability
	Simulations
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2

0730 - 0830	<i>Machine Models & Control Systems</i> GENROU, GENCLS, GENSAL Models • Excitation System Models (IEEET1,
0750 - 0050	EXST1, etc.) • Governor Models (IEEEG1, TGOV1, HYGOV) • Power
	System Stabilizer (PSS2A, PSS1A)
	Load Modeling Techniques
0830 - 0930	Static versus Dynamic Load Models • ZIP Model, Frequency and Voltage
	Dependence • Composite Load Models • Motor Load Modeling
0930 - 0945	Break
	Simulation Initialization & Validation
0945 - 1100	Ensuring Data Consistency Between Load Flow and Dynamic Data • Run Flat
0010 1100	Start and Steady-State Initialization • Checking Machine Angles and Speeds •
	Diagnostic Tools for Validation
	Event & Disturbance Definition
1100 1215	Adding Faults (3-Phase, Single-Line-to-Ground, etc.) • Switching Actions
1100 - 1215	(Opening/Closing Breakers) • Line Trips and Generator Outages • Sequence
	and Timing of Dynamic Events
1215 – 1230	Break
	Running Time-Domain Simulations
1220 1330	• Simulation Parameters (Time Step, Stop Time) • Interpreting Outputs:
1230 - 1330	Angles, Speeds, Voltages • Plotting and Exporting Dynamic Results • Case
	Comparison and Result Validation
	Model Calibration & Verification
1330 1420	• Tuning Dynamic Models for Realistic Behavior • Matching Simulated
1550 - 1420	Response with Real Data • Sensitivity to Parameter Changes • Documentation
	and Reporting
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

EE1117- Page 6 of 9

Transient Stability Concepts Response to Large Disturbances • Critical Clearing Time and Angle Deviation • Swing Curves and Damping Behavior • Impact of Inertia and System Strength0830 - 0930Protection & Control Coordination Relay Coordination with Transient Events • Under-Frequency and Over- Voltage Tripping • Load Shedding Schemes • Dynamic Brake and Fast Valving Simulation0930 - 0945Break0935 - 1100Multi-Machine System Stability Inter-Area Oscillations • System-Wide Angle Stability • Identifying Weak Buses and Modes • Analyzing Machine-to-Machine InteractionsApplication of Power System Stabilizers (PSS)1100 - 1215PSS Design Principles • Impact on Damping of Oscillations • Tuning and Testing within PSS®E • Comparative Studies with and without PSS1215 - 1230Break1230 - 1330Voltage Stability Analysis Dynamic s and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Kerap Lunch & End of Day Three	Day 3	
0830 - 0930Protection & Control Coordination Relay Coordination with Transient Events • Under-Frequency and Over- Voltage Tripping • Load Shedding Schemes • Dynamic Brake and Fast Valving Simulation0930 - 0945Break0945 - 1100Inter-Area Oscillations • System-Wide Angle Stability • Identifying Weak Buses and Modes • Analyzing Machine-to-Machine Interactions100 - 1215PSS Design Principles • Impact on Damping of Oscillations • Tuning and Testing within PSS®E • Comparative Studies with and without PSS1215 - 1230Break1230 - 1330Oynamics and Voltage Support • Impact of Reactive Power Sources • Load Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Plot Customization and Interpretation • Case Documentation Practices1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	0730 - 0830	Transient Stability ConceptsResponse to Large Disturbances • Critical Clearing Time and Angle Deviation• Swing Curves and Damping Behavior • Impact of Inertia and SystemStrength
0930 - 0945Break0945 - 1100Inter-Area Oscillations • System-Wide Angle Stability • Identifying Weak Buses and Modes • Analyzing Machine-to-Machine Interactions1100 - 1215Application of Power System Stabilizers (PSS) PSS Design Principles • Impact on Damping of Oscillations • Tuning and Testing within PSS®E • Comparative Studies with and without PSS1215 - 1230Break1230 - 1330Voltage Stability Analysis Dynamic voltage Support • Impact of Reactive Power Sources • Load Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	0830 - 0930	Protection & Control Coordination Relay Coordination with Transient Events • Under-Frequency and Over- Voltage Tripping • Load Shedding Schemes • Dynamic Brake and Fast Valving Simulation
0945 - 1100Multi-Machine System Stability Inter-Area Oscillations • System-Wide Angle Stability • Identifying Weak Buses and Modes • Analyzing Machine-to-Machine Interactions1100 - 1215Application of Power System Stabilizers (PSS) PSS Design Principles • Impact on Damping of Oscillations • Tuning and Testing within PSS®E • Comparative Studies with and without PSS1215 - 1230Break1230 - 1330Voltage Stability Analysis Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be 	0930 - 0945	Break
Application of Power System Stabilizers (PSS)1100 - 1215PSS Design Principles • Impact on Damping of Oscillations • Tuning and Testing within PSS®E • Comparative Studies with and without PSS1215 - 1230Break1230 - 1330Voltage Stability Analysis Dynamic Voltage Support • Impact of Reactive Power Sources • Load Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	0945 – 1100	Multi-Machine System StabilityInter-Area Oscillations • System-Wide Angle Stability • Identifying WeakBuses and Modes • Analyzing Machine-to-Machine Interactions
1215 - 1230Break1230 - 1330Voltage Stability Analysis Dynamic Voltage Support • Impact of Reactive Power Sources • Load Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	1100 - 1215	Application of Power System Stabilizers (PSS)PSS Design Principles • Impact on Damping of Oscillations • Tuning and Testing within PSS®E • Comparative Studies with and without PSS
1230 - 1330Voltage Stability Analysis Dynamic Voltage Support • Impact of Reactive Power Sources • Load Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	1215 - 1230	Break
1330 - 1420Visualization & Reporting of Stability Results Plot Customization and Interpretation • Exporting to Excel and Reports • Automatic Report Generation • Case Documentation Practices1420 - 1430Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	1230 - 1330	Voltage Stability Analysis Dynamic Voltage Support • Impact of Reactive Power Sources • Load Dynamics and Voltage Collapse • Use of FACTS Devices (SVC, STATCOM) in Simulations
Recap1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow1430Lunch & End of Day Three	1330 - 1420	<i>Visualization & Reporting of Stability Results</i> <i>Plot Customization and Interpretation • Exporting to Excel and Reports •</i> <i>Automatic Report Generation • Case Documentation Practices</i>
1430 Lunch & End of Day Three	1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
	1430	Lunch & End of Day Three

Dav 4

0730 - 0830	Renewable Integration & Dynamic Models Wind and Solar Plant Modeling (WT3G2, REGCA1) • Control Characteristics (Inverter-Based Resources) • Fault Ride-Through Capabilities • System Inertia Reduction Impacts
0830 - 0930	Frequency Stability Analysis Frequency Response and Regulation • Inertia and Primary Control • Under- Frequency Load Shedding (UFLS) • Simulation of Frequency Excursions
0930 - 0945	Break
0945 - 1100	<i>Contingency Analysis & Stability Margins</i> N-1 and N-2 Contingency Evaluation • Automatic Event Looping • Quantifying System Robustness • Remedial Action Schemes
1100 – 1215	FACTS & HVDC Systems Modeling SVC, STATCOM, TCSC Modeling • HVDC Link Representation (LCC and VSC) • Control System Interactions • System Dynamic Response to FACTS Devices
1215 – 1230	Break
1230 - 1330	Model Validation Using Measurement Data PMU and SCADA Data for Benchmarking • Case Reconstruction from Disturbance Records • Error Analysis and Correction • Adjusting for Real- World Variability

EE1117- Page 7 of 9

1330 - 1420	Scripting & Automation in PSSE
	Python Scripting Basics • Automating Simulations and Case Setup • Batch
	Processing and Reporting • Custom Functions and User-Defined Tools
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

	Company-Specific Power System Modeling
0730 - 0830	Overview of Company System Characteristics • Modeling Generation and
	Transmission Topology • Load Profiles and Renewable Mix • Region-Specific
	Control Settings
	Hands-On: Fault Analysis & Mitigation
0830 - 0930	Simulating Generator and Line Faults • Determining Critical Clearing Time •
	Applying Corrective Controls • Interpretation of Results
0930 - 0945	Break
	Case Study: Islanding & System Restoration
0945 – 1100	Intentional Islanding Strategy • Dynamic Reconnection Techniques • Load-
	Generation Balance After Fault • Black Start and Ramping Scenarios
	Project: Renewable Scenario Integration
1100 1230	Simulate High Renewable Penetration • Assess Stability Margin Degradation
1100 - 1250	• Evaluate Impact of Inertia Reduction • Mitigation with Synthetic Inertia and
	Storage
1230 – 1245	Break
	Performance Assessment & Optimization
1245 – 1345	<i>Fine-Tuning System Response</i> • <i>Evaluating Stability Index Trends</i> • <i>Impact of</i>
	Network Reconfiguration • Optimizing Control Schemes
1345 - 1400	Course Conclusion
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE1117- Page 8 of 9

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "PSSE" software.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1117- Page 9 of 9

