

### **COURSE OVERVIEW IE0035**

## Liquid & Gas Flowmetering & Custody Measurement

Multiphase, Ultrasonic & Loss Control

(30 PDHs)

AWARI

#### **Course Title**

Liquid & Gas Flowmetering & Custody Measurement: Multiphase, Ultrasonic & Loss Control

### **Course Reference**

IE0035

### **Course Date/Venue**

Session 1: June 29-July 03, 2025/ Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: December 07-11, 2025/ Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA



### **Course Duration/Credits**

Five days/3.0 CEUs/30 PDHs

### **Course Description**



This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide delegates with a detailed and up-to-date overview of liquid and gas flowmetering and custody measurement covering multiphase, ultrasonic and loss control.

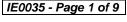


Participants will be able to select and calibrate an ultrasonic flowmeter for the required application and deal with related operational and measurement concern; choose the correct flowmeter or combination of flowmeters for a particular multiphase application and be able to resolve any ensuing problems in relation to unreliability or inaccuracy of flowmeter readings; and compare the performances of existing multiphase meters such as Agar, Weatherford, Roxar, Schlumberger and Haimo.



The course will also cover the different types, methods and techniques used in custody transfer; the various pipeline meter considerations; systematic techniques in leak detection and loss control during custody transfer; and the various API standards applicable to flowmetrering and custody measurement.




























### **Course Objectives**

Upon the successful completion of this course, each participant will be able to:-

- Apply an in-depth knowledge and skills in liquid and gas multiphase and singlephase flowmetering, ultrasonic flowmetering, custody measurement and loss control of petroleum products
- Select and calibrate an ultrasonic flowmeter for the required application and deal with related operational and measurement concerns
- Choose the correct flowmeter or combination of flowmeters for a particular multiphase application and be able to resolve any ensuing problems in relation to unreliability or inaccuracy of flowmeter readings
- Compare the performances of existing multiphase meters such as Agar, Weatherford, Roxar, Schlumberger and Haimo and recognize their importance in flowmetering
- Determine the different types, methods and techniques used in custody transfer and understand the various pipeline meter consideration
- Employ systematic techniques in leak detection and loss control during custody transfer and list the various API standards applicable to flowmetering and custody measurement

### **Exclusive Smart Training Kit - H-STK®**



Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

#### **Who Should Attend**

This course is intended for instrumentation, inspection, control, custody, metering and process engineers and other technical staff. Further, the course is suitable for piping engineers, pipelines engineers, mechanical engineers, operations engineers, maintenance engineers, plant/field supervisors & foreman and loss control coordinators.

#### Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.























### **Course Certificate(s)**

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

### **Certificate Accreditations**

Certificates are accredited by the following international accreditation organizations:-



The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.



#### British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

#### **Accommodation**

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.





















### Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:



Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Process Control Instrumentation, Process Instrumentation & Control, Process Control, Instrumentation, Troubleshooting & Problem Solving, Process Instrumentation and Control Techniques, Instrumentation for Process Optimization and Control, Process Automation and Instrumentation Systems Integration, Troubleshooting in Process Control Systems, Process

Control & Safeguarding, **Troubleshooting Instrumentation** and Control Systems, GC Processes **Troubleshooting** and Control Systems, Practical **Troubleshooting** and Repair of Electronic

Circuits, Process Control, Troubleshooting & Problem Solving. Process Control (PCI) & Safeguarding, Control Loop & Valve Tuning, Controller Maintenance Procedures, High Integrity Protection Systems (HIPS), Instrument Calibration & Maintenance, Instrumented Safety Systems, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System - Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS. H&B DCS. Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD), Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750). Further, he is also well-versed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the Projects Manager wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the Contracts & Projects Manager, Managing Director, Technical Director, Divisional Manager, Plant Automation Engineer, Senior Consulting Engineer, Senior Systems Engineer, Electrical & Instrumentation Engineer, Consulting Engineer, Service Engineer and Section Leader from several international companies such as Philips, FEDMIS, AEG, DAVY International, BOSCH, Billiton and Endress/Hauser.

Mr. Thoresson is a Registered Professional Engineering Technologist and has a Bachelor's degree in Electrical & Electronics Engineering and a National Diploma in Radio Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops worldwide.



















# Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

# Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

| Day 1       |                                                                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0730 - 0800 | Registration & Coffee                                                                                                                                                                                             |
| 0800 - 0815 | Welcome & Introduction                                                                                                                                                                                            |
| 0815 - 0830 | PRE-TEST                                                                                                                                                                                                          |
| 0830 - 0915 | Flowmetering Overview Introduction to Pipeline Flowmetering with Highlighted Problem Areas                                                                                                                        |
| 0915 – 1000 | Flow Measurement Accuracy Flow Measurement Uncertainty • Repeatability & Reproducibility • Basic Statistics (Average & Standard Deviation) • Calibration Graphs                                                   |
| 1000 – 1015 | Break                                                                                                                                                                                                             |
| 1015 - 1100 | Fluid Mechanics of Pipe Flows Laminar Flows & Turbulent Flows • Pipe Velocity Distributions • Worked Examples • Pipe Fitting Losses                                                                               |
| 1100 - 1130 | DVD on Flow Measurement                                                                                                                                                                                           |
| 1130 – 1215 | Differential Pressure Type Flowmeters Orifice Meters • Critical Flow Element • Venturi Meters • Flow Nozzles • Variable Area Meters • Pitot Tubes & Pitot Static Tubes • Target Flowmeters                        |
| 1215 – 1230 | Break                                                                                                                                                                                                             |
| 1230 – 1330 | Displacement, Rotary-Inferential & Fluid-Oscillatory Flowmeters Helical Gear Meter • Nutating Disc Meter • Piston Meter • Rotary Meter • Turbine Flowmeters • Vortex Shedding Meters                              |
| 1330 – 1420 | Electromagnetic, Coriolis Mass & Miscellaneous Flowmeters  AC & Pulsed DC Types • Cross Correlation Methods • Tracer Methods • Weighing Methods • Velocity Profile Integration Techniques • Laser Doppler Systems |
| 1420 - 1430 | Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow                                     |
| 1430        | Lunch & End of Day One                                                                                                                                                                                            |

#### Dav 2

| / _         |                                                                       |
|-------------|-----------------------------------------------------------------------|
| 0730 – 0900 | Ultrasonic Flowmeters-Basic Principles                                |
|             | General • Transit Time • Doppler • Beam Configuration • Clamp-On Type |
|             | • Insertion Type                                                      |
| 0900 - 0930 | Video Presentation                                                    |
|             | 3 Beam Ultrasonic Flowmeter                                           |
| 0930 - 0945 | Break                                                                 |



















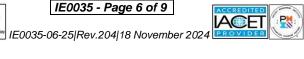


|             | Ultrasonic Flowmeters-Main Types                                                |
|-------------|---------------------------------------------------------------------------------|
| 0945 – 1100 | Elster - Instrument • Emerson - Daniel • Panametrics - Sentinel • Sick -        |
|             | Maihack • Krohne • FMC – Smith Meters • Typical Specification • Future          |
|             | Trends                                                                          |
|             | Ultrasonic Flowmeters-Sizing & Selection                                        |
| 1100 – 1215 | Sizing Notes • Practical Example • Selection Guidelines • Typical               |
|             | Specification                                                                   |
| 1215 – 1230 | Break                                                                           |
|             | Flowmeter Calibration                                                           |
| 1220 1220   | Methods for Liquid Flowmeters • Use of Pipe Provers • Methods for Gas           |
| 1230 – 1330 | Flowmeters • Methods for Ultrasonic Flowmeters • Critical Flow Nozzle           |
|             | Measurement Considerations, Flow Conditioners & Operational Issues              |
|             | Basic Requirements • Response • Uncertainty • Instrument Specification •        |
| 1330 – 1420 | Accuracy Specifications • Fully Developed Pipeline Flow • Test Results •        |
|             | Types of Flow Conditioners • Contamination • Control Valve Noise • Signal       |
|             | Quality • On-Line Monitoring                                                    |
| 1420 - 1430 | Recap                                                                           |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the |
|             | Topics that were Discussed Today and Advise Them of the Topics to be Discussed  |
|             | Tomorrow                                                                        |
| 1430        | Lunch & End of Day Two                                                          |

Day 3

| Day 3       |                                                                                 |
|-------------|---------------------------------------------------------------------------------|
| 0730 - 0830 | Introduction to Multiphase Flows                                                |
|             | Mixture Density • Gas Velocity • Homogeneous Flows • Slip • Superficial         |
|             | Phase Velocities • Velocity Ratio • Void Fraction                               |
|             | Flow Patterns in Two & Three-Phase Flows                                        |
| 0830 - 0930 | Stratified Flows • Slug Flows • Bubble Flows • Annular Flows • Churn            |
|             | Flows • Transitions                                                             |
| 0930 - 0945 | Break                                                                           |
| 0045 1100   | Flow Pattern Maps                                                               |
| 0945 – 1100 | Horizontal Flows & Vertical Flows                                               |
|             | Effect of Flow Patterns on Multiphase Flow Measurement                          |
| 1100 – 1215 | Velocity Differences between Gas & Liquid Phases • Velocity Differences         |
|             | between-n Oil & Water Phases                                                    |
| 1215 – 1230 | Break                                                                           |
| 1220 1220   | Modelling of Multiphase Flows                                                   |
| 1230 – 1330 | Pressure Drop, Mixing & Density Measurement • Errors                            |
| 1330 - 1420 | Phase Distribution Effects on Measurement                                       |
|             | Continuous Phase, Viscosity, Single Phase Meters in Multiphase Flows            |
| 1420 - 1430 | Recap                                                                           |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the |
|             | Topics that were Discussed Today and Advise Them of the Topics to be Discussed  |
|             | Tomorrow                                                                        |
| 1430        | Lunch & End of Day Three                                                        |





















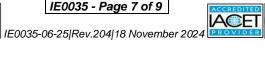



Day 4

| Day 4       |                                                                                                                                                                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0730 - 0815 | Multiphase Meter Operating Principles & Classification Velocity Measurement • Phase Fraction                                                                                                                                               |
| 0815 – 0900 | Descriptions of Existing Multiphase Meters Agar • Weatherford • Roxar • Schlumberger • Haimo                                                                                                                                               |
| _           | Industrial In-depth Presentation by a Major Manufacturer of Multiphase                                                                                                                                                                     |
| 0900 – 1030 | Meters Detailed Technology • Performance Specification • Field Installation • Calibration & Testing                                                                                                                                        |
| 1030 - 1045 | Break                                                                                                                                                                                                                                      |
| 1045 - 1115 | Multiphase Flowmeter Accuracy Uncertainties in Individual Phase Flowrates • Origins of Uncertainties • Expression of Multiphase Meter Accuracy                                                                                             |
| 1115 – 1215 | Verification of Multiphase Flow Meters during Operation  Baseline Monitoring • Self Checking/Self Diagnostics • Two Meters in Series  • Mobile Test Units • Tracer Techniques • Injection • Sampling • Reconciliation                      |
| 1215 - 1230 | Break                                                                                                                                                                                                                                      |
| 1230 - 1330 | Level MeasurementMain Types • Buoyancy Tape Systems • Hydrostatic Pressure • UltrasonicMeasurement • Radar Measurement • Vibration Switches • ElectricalMeasurement • Installation Considerations • Impact on the Control Loop •The Future |
| 1330 - 1420 | OIML Recommendation R117                                                                                                                                                                                                                   |
|             | General Requirements • Field of Operation • Accuracy Classes • Case Example • API MPMS Chapter 5.8                                                                                                                                         |
| 1420 – 1430 | Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow                                                              |
| 1430        | Lunch & End of Day Four                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                            |

Day 5

| Day 5       |                                                                                |
|-------------|--------------------------------------------------------------------------------|
| 0730 - 0815 | Terminal Custody Transfer                                                      |
|             | Methods of Tank Calibration • Tank Gauging Techniques • Tank Management        |
|             | Systems                                                                        |
| 0815 – 0845 | Video Presentation                                                             |
|             | Tank Gauging System                                                            |
| 0045 0020   | Lease Automatic Custody Transfer                                               |
| 0845 – 0930 | System Requirements • Operation • Equipment • Conclusions • Appendix           |
| 0930 - 0945 | Break                                                                          |
| 0945 – 1045 | Truck Custody Transfer                                                         |
|             | Truck Types • Typical Equipment • Other Considerations • Performance •         |
|             | New Developments                                                               |
| 1045 - 1145 | Pipeline Meter Considerations                                                  |
|             | Flow in a Pipeline. • Pipeline Installation Considerations • DP Transmitters • |
|             | Multi-Port Averaging Pitot • Oscillatory Flow Measurement • Ultrasonic         |
|             | Flow Measurement • Mass Flow Measurement                                       |
| 1145 – 1200 | Break                                                                          |






















| 1200 – 1300 | Leak Detection & Loss Control System  API 1130 • A Theoretical or Practical Approach • Real Time Transient Model  • Practical Example • Results • Custody Transfer Sampling • Case Studies |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1300 – 1345 | API Standards  API Gravity • Classification of Grades • Temperature Measurement • Measuring the Suspended S&W Content • Calculating Net Volume                                             |
| 1345 – 1400 | Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course                                        |
| 1400 – 1415 | POST-TEST                                                                                                                                                                                  |
| 1415 - 1430 | Presentation of Course Certificates                                                                                                                                                        |
| 1430        | Lunch & End of Course                                                                                                                                                                      |







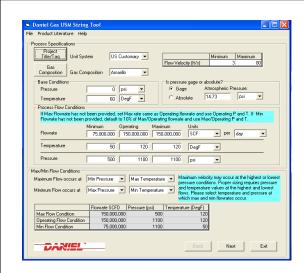




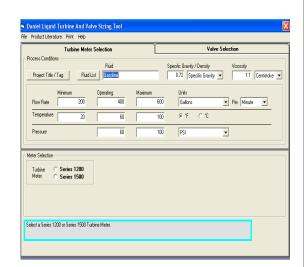




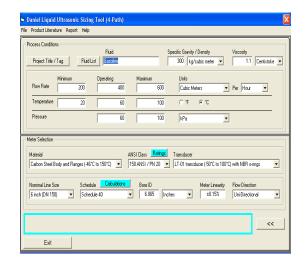




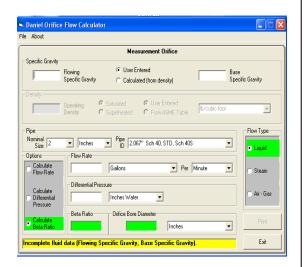



## Simulators (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool" and "Orifice Flow Calculator" simulators.




**Gas Ultrasonic Meter (USM) Sizing Tool Simulator** 



**Liquid Turbine Meter and Control Valve Sizing Tool Simulator** 



**Liquid Ultrasonic Meter Sizing Tool Simulator** 



**Orifice Flow Calculator Simulator** 

### **Course Coordinator**

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org











