

COURSE OVERVIEW TE0304 AI & Technologies in Water System

Course Title

AI & Technologies in Water System

Course Date/Venue

Session 1: August 04-08, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: December 08-12, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

o CEUs

(30 PDHs)

AWAT

Course Reference

TE0304

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of AI & Technologies in Water System. It covers the artificial intelligence in water systems, historical development of water technologies and smart water networks (SWN); the AI algorithms for water demand forecasting, AI in water quality monitoring and the role of AI in water conservation; the AI for water treatment process control, predictive analytics for maintenance in water systems and automation in water distribution; the AI in flood prediction and management, machine learning for water resource management and blockchain in water systems.

Further, the course will also discuss the deep learning for water system analytics, AI and machine learning for water leak detection and natural language processing (NLP) in water system data analysis; the AI-powered water quality control systems, energy management in water systems using AI and smart cities and AI integration in water systems; the AI for stormwater management and wastewater treatment optimization; the water system security and AI and big data in water system planning; and improving water sustainability in cities, reducing the environmental impact of water systems and integrating sustainability goals into AI models.

TE0304 - Page 1 of 9

During this interactive course, participants will learn the emerging AI technologies and their potential applications; the ethical considerations in AI for water systems and AI for climate change and water management; the collaboration between technology providers, utilities, and governments and building AI ecosystems for water system advancements; overcoming data quality and integration issues; and ensuring scalability of AI solutions across diverse systems.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a good working knowledge on AI and technologies in water system
- Discuss artificial intelligence in water systems, historical development of water technologies and smart water networks (SWN)
- Illustrate AI algorithms for water demand forecasting and AI in water quality monitoring and identify the role of AI in water conservation
- Carryout AI for water treatment process control, predictive analytics for maintenance in water systems and automation in water distribution
- Apply AI in flood prediction and management, machine learning for water resource management and blockchain in water systems
- Employ deep learning for water system analytics, AI and machine learning for water leak detection and natural language processing (NLP) in water system data analysis
- Apply AI-powered water quality control systems, energy management in water systems using AI and smart cities and AI integration in water systems
- Carryout AI for stormwater management, AI for wastewater treatment optimization, water system security and AI and AI and big data in water system planning
- Apply AI for improving water sustainability in cities, reduce the environmental impact of water systems using AI and integrate sustainability goals into AI models
- Discuss the emerging AI technologies and their potential applications including ethical considerations in AI for water systems and AI for climate change and water management
- Collaborate between technology providers, utilities, and governments and build AI ecosystems for water system advancements
- Overcome data quality and integration issues and ensure scalability of AI solutions across diverse systems

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

TE0304 - Page 2 of 9 TE0304-08-25|Rev.00|13 April 2025

Who Should Attend

This course provides an overview of all significant aspects and considerations of AI and technologies in water system for water industry professionals, technology and AI experts water engineers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

TE0304 - Page 3 of 9

TE0304-08-25|Rev.00|13 April 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Kyle Bester is a Senior Water Engineer with extensive years of practical experience within the Oil & Gas, Power & Water Utilities and other Energy sectors. His expertise includes Water Reservoir, Water Tanks, Water Pumping Station, Water Distribution System, Water Network System, Water Pipes & Fittings, Water Hydraulic Modelling, Water Storage Reservoir, Reservoirs & Pumping Stations Design & Operation, Pumping Systems, Interconnecting Pipelines, Water Network Hydraulic Simulation Modelling, Water Supply Design, Water

Balance Modelling, Water Distribution Network, Water Network System Analysis, Water Forecasts Demand, Water Pipelines Materials & Fittings, Water Network System Design, Pump Houses & Booster Pumping Stations, Potable Water Transmission, Water Distribution Network, Districts Meters Areas (DMAs), Water Supply & Desalination Plants Rehabilitation, Water Reservoirs & Pumping Stations, Water Network System Extension, Water Network System Replacement & Upgrade, Water Networks Optimization, Water Supply & Distribution Systems Efficiency & Effectiveness, Pipe Materials & Fittings, Service Reservoir Design & Operation, Pipes & Fittings, Water Network System Design & Operation, Supply Water Network Rehabilitation, Water Loss Reduction. Main Water System Construction. Main Water Line Construction. Transmission & Distribution Pipelines, Water Distribution Design & Modelling, Water Supply System, Oilfield Water Treatment, Best Practice in Sewage & Industrial Wastewater Treatment & Environmental Protection, Water Distribution Design & Modelling, Desilting, Treating & Handling Oily Water, Water Chemistry for Power Plant, Water Sector Orientation, Environmental Impact Assessment (EIA), Potable Water, Reverse Osmosis Treatment Technology and Chlorination System, Well Inventory, Monitoring & Conservation, Qualitative Analysis of Soil & Ground Water, Water Networking, Hydraulic Modelling Systems, Pumping Stations, Centrifugal Pumps, Pipelines & Pumping, Water Reservoirs, Water Storage Tanks, Extended Activated Sludge Treatment, Sewage & Industrial Wastewater Treatment & Environmental Protection, Supervising & Monitoring Sewage Works, Water Desalination Technologies, Water Distribution & Pump Station, Best Water Equipment Selection & Inspection, Hydraulic Modelling for Water Network Design, Water Utility Industry, Water Desalination Technologies & New Development, Water Hydrology, Water Conveyors, Water Networks Rehabilitation. He is currently the Part Owner & Manager of Extreme Water SA wherein he manages, re-designed and commissioned a water and wastewater treatment plants.

During his career life, Mr. Bester has gained his practical and field experience through his various significant positions and dedication as the **Project Manager**, **Asset Manager**, **Manager**, **Water Engineer**, **Supervisor**, **Team Leader**, **Analyst**, **Process Technician**, **Landscape Designer** and **Senior Instructor/Trainer** for various international companies, infrastructures, water and wastewater treatment plants from New Zealand, UK, Samoa, Zimbabwe and South Africa, just to name a few.

Mr. Bester holds a **Diploma** in **Wastewater Treatment** and a **National Certificate** in **Wastewater & Water Treatment**. Further, he is a **Certified Instructor/Trainer**, an **Approved Chemical Handler** and has delivered numerous courses, trainings, conferences, seminars and workshops internationally.

TE0304 - Page 4 of 9

TE0304-08-25|Rev.00|13 April 2025

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Artificial Intelligence in Water Systems Definition of AI and its Relevance to the Water Industry • Benefits of AI Adoption in Water System • Types of AI Technologies Used in Water System • Key Challenges in Implementating AI in Water SystemS
0930 - 0945	Break
0945 - 1045	<i>Historical Development of Water Technologies</i> <i>Early Technologies in Water Treatment and Distribution</i> • <i>Evolution of</i> <i>Automation and Control in Water Systems</i> • <i>The Rise of Digitalization in Water</i> <i>Management</i> • <i>Technological Advancements Over the Past Decade</i>
1045 - 1145	<i>Smart Water Networks (SWN)</i> Definition and Components of SWN • Role of IoT in Creating Smart Water Systems • Real-Time Data Monitoring and Analytics • Benefits of Predictive Maintenance in SWN
1145 - 1230	AI Algorithms for Water Demand Forecasting Machine Learning Techniques for Demand Forecasting • Historical Data Analysis and Trend Identification • Algorithms Used for Load Forecasting in Water Systems • Case Studies of Successful AI-Based Demand Forecasting Models
1230 - 1245	Break

TE0304 - Page 5 of 9

1245 - 1330	<i>AI in Water Quality Monitoring</i> Use of AI for Detecting Water Contamination • Sensor Networks and AI-Based Analysis • Machine Learning Models for Predicting Water Quality • Real-Time Alerting and Decision-Making Systems
1330 - 1420	The Role of AI in Water ConservationAI-Driven Strategies for Reducing Water Waste• Optimization of WaterDistribution Through AI• AI-Based Leak Detection and Repair• WaterConservation Programs Powered by AI
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

Day 2	
0730 – 0830	AI for Water Treatment Process Control
	How AI Optimizes Water Treatment Processes • Real-Time Optimization and
	Decision-Making • Benefits of AI for Enhancing Process Efficiency • Key
	Challenges in AI Implementation in Treatment Plants
	Predictive Analytics for Maintenance in Water Systems
0830 - 0930	Predictive Maintenance Using Machine Learning • Identifying Equipment
0830 - 0930	Failure Patterns • Benefits of Reducing Downtime Through Predictive Analytics
	• Real-World Examples of Predictive Maintenance in Water Systems
0930 - 0945	Break
	Automation in Water Distribution
0945 - 1130	Role of Automation in Modern Water Distribution Systems • AI-Driven Flow
0943 - 1150	Regulation and Pressure Management • Smart Valves and Pumps for Optimized
	Water Distribution • Real-Time Control Systems for Water Networks
	AI in Flood Prediction and Management
1130 - 1230	Machine Learning Techniques for Flood Prediction • Predictive Models for Flood
1150 - 1250	Risk Assessment • AI-Based Early Warning Systems • Case Studies of
	Successful AI Implementations in Flood Management
1230 - 1245	Break
	Machine Learning for Water Resource Management
1245 - 1330	Overview of Machine Learning Techniques • AI Applications for Managing
1243 - 1550	Water Resources • Forecasting and Resource Allocation Using AI • Real-Time
	Water Resource Optimization Models
	Blockchain in Water Systems
1330 - 1420	Introduction to Blockchain Technology • Use of Blockchain for Data Security and
1550 - 1420	Integrity • Blockchain in Water Quality Monitoring and Billing •Future
	Prospects of Blockchain in Water Management
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Deep Learning for Water System Analytics Basics of Deep Learning in AI • Applications of Deep Learning for Water System Optimization • Image Recognition and Its Role in Monitoring Water Systems •
	Case Studies on the Use of Deep Learning in Water Quality Monitoring

TE0304 - Page 6 of 9 TE0304-08-25|Rev.00|13 April 2025

0830 - 0930	<i>AI & Machine Learning for Water Leak Detection</i> <i>AI Techniques for Early Leak Detection</i> • <i>Sensor Networks and AI for Predictive</i> <i>Leak Detection</i> • <i>Machine Learning Models for Assessing Water Loss</i> • <i>Implementation of AI in Real-World Leak Detection Systems</i>
0930 - 0945	Break
0945 - 1130	Natural Language Processing (NLP) in Water System Data Analysis Introduction to NLP Techniques • Use of NLP for Analyzing Water System Data Reports • Text-Based Data Extraction for Decision-Making • Integration of NLP With Other AI Models in Water Systems
1130 - 1230	AI-Powered Water Quality Control Systems Automation of Water Quality Monitoring and Control • AI-Based Decision- Making in Water Treatment Plants • Real-Time Adjustments to Chemical Dosages and Treatment Cycles • Machine Learning Algorithms for Optimizing Water Treatment
1230 - 1245	Break
1245 - 1330	Energy Management in Water Systems Using AI Role of AI in Reducing Energy Consumption in Water Systems • AI-Driven Optimization of Energy Use in Water Treatment Plants • Machine Learning for Energy-Efficient Water Distribution • Impact of AI on Operational Costs and Sustainability
1330 - 1420	<i>Case Studies on AI Implementation in Water Systems</i> <i>Global Case Studies of AI in Water Utilities</i> • <i>Lessons Learned from Successful</i> <i>AI Projects</i> • <i>Challenges and Obstacles in Implementing AI Solutions</i> • <i>Future</i> <i>Outlook for AI in Water Management</i>
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Duy 4	
0730 – 0830	Smart Cities & AI Integration in Water Systems Definition and Components of a Smart City • AI's Role in Water Management
	Within Smart Cities • Smart Meters and Sensors for Water Usage Data • AI-
	Driven Infrastructure Management in Urban Water Systems
	AI for Stormwater Management
0020 0020	Machine Learning Models for Stormwater Prediction • AI Applications for
0830 – 0930	Managing Rainwater and Urban Runoff • Real-Time Stormwater Monitoring
	and Flood Prevention • Predicting and Mitigating Stormwater-Related Issues
0930 - 0945	Break
	AI for Wastewater Treatment Optimization
0045 1120	Machine Learning Applications in Wastewater Treatment • Real-Time
0945 – 1130	Optimization of Wastewater Processing •AI in Sludge Management and
	Disposal • Sustainable Practices in Wastewater Treatment Using AI
1130 - 1230	Water System Security & AI
	Cybersecurity Risks in Water System Management • AI Techniques for
	Detecting and Preventing Cyber Threats • Protecting Sensitive Water
	Infrastructure Through AI • AI-Based Monitoring and Threat Detection
	<i>Systems</i>
1230 - 1245	Break

TE0304 - Page 7 of 9

TE0304-08-25|Rev.00|13 April 2025

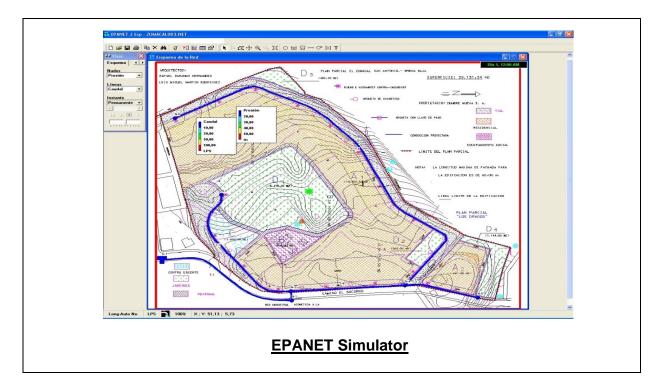
1245 - 1330	AI & Big Data in Water System Planning Role of Big Data in Water System Planning and Management • Integrating AI and Big Data for Future Water System Design • Data Analytics for Forecasting and Infrastructure Development • Real-World Examples of AI and Big Data Usage in Water Projects
1330 - 1420	Sustainability & AI in Water Systems AI for Improving Water Sustainability in Cities • Reducing the Environmental Impact of Water Systems Using AI • Integrating Sustainability Goals into AI Models • Future Trends in AI-Driven Water Sustainability
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

Day 5	
0730 - 0830	<i>The Future of AI in Water Systems</i> <i>Emerging AI Technologies and Their Potential Applications</i> • <i>The Role of AI in</i> <i>Addressing Global Water Scarcity</i> • <i>AI's Impact on the Future of Water</i> <i>Infrastructure</i> • <i>Research and Development Trends in AI and Water Systems</i>
0830 - 0930	Ethical Considerations in AI for Water Systems Ethical Challenges in Implementing AI in Water Systems • Privacy and Data Security Concerns in Water System AI • Responsible Use of AI in Water Resource Management • Regulatory Frameworks for AI in Water Systems
0930 - 0945	Break
0945 – 1100	AI for Climate Change & Water Management How AI Can Address the Impacts of Climate Change on Water Resources • Predicting and Managing Water Shortages Using AI • Role of AI in Climate Adaptation for Water Systems • Case Studies of AI in Climate Change Mitigation Strategies
1100 – 1200	Collaboration & Partnerships in AI-Driven Water Systems Collaboration Between Technology Providers, Utilities, and Governments • Public-Private Partnerships for AI-Driven Water Management •Role of Academia and Research Institutions in AI Innovations •Building AI Ecosystems for Water System Advancements
1200 - 1215	Break
1215 - 1230	<i>Challenges in Scaling AI Solutions in Water Systems</i> <i>Technological, Financial, and Organizational Barriers</i> • <i>Overcoming Data</i> <i>Quality and Integration Issues</i> • <i>Ensuring Scalability of AI Solutions Across</i> <i>Diverse Systems</i> • <i>Case Studies of Overcoming AI Implementation Challenges</i>
1230 - 1345	Opportunities for Future AI Innovations in Water Systems Identifying Untapped Areas for AI Applications in Water Systems • Opportunities for Innovation in AI-Powered Water Technologies • The Role of AI in Enhancing Customer Experience in Water Utilities • Potential Benefits of AI for Long-Term Water Sustainability
1345 - 1400	<i>Course Conclusion</i> <i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i> <i>Course Topics that were Covered During the Course</i>
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

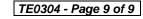
TE0304-08-25|Rev.00|13 April 2025

TE0304 - Page 8 of 9


UKAS

24

Simulator (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the latest revision of "EPANET" simulators.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

