

COURSE OVERVIEW PE1070 UOP Sulfolane Technology (Advanced)

Course Title

UOP Sulfolane Technology (Advanced)

Course Date/Venue

Ocrober 12-16, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Reference

PE1070

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Universal Oil Products Sulfolane Technology (Advanced). It covers the sulfolane technology including process purpose and applications in aromatics extraction, key features of UOP's sulfolane process and integration into refinery and petrochemical complexes; the physical and chemical properties of sulfolane, solubility of aromatics and non-aromatics, partition coefficient behavior and temperature and pressure dependency; the extraction column operation, stripping and solvent recovery sections, contaminants and degradation mechanisms and process chemistry; and the detailed process flow diagram (PFD), process and instrumentation diagram (P&ID) and major equipment design and operation.

Further, the course will also discuss the heat integration and energy optimization, solvent circulation and makeup system including advanced process control (APC) and automation; the startup and shutdown procedures covering step-by-step startup process, solvent preheating and loading, shutdown strategies for planned/unplanned stops equipment isolation; purging and the and operational troubleshooting, solvent quality and reclamation; and the hydraulic and flow distribution control, process optimization techniques and corrosion and material selection.

PE1070 - Page 1 of 9

During this interactive course, participants will learn the key performance indicators (KPIs), simulation and modeling and operational data analysis; the benchmarking and global best practices covering UOP plant performance benchmarks, comparative review of licensed facilities and upgrades and modernization trends; the process safety, HAZOP methodology and critical nodes, fire and explosion prevention and emergency shutdown system design; the VOC emission control, wastewater and solvent recovery, regulatory requirements and monitoring and reporting best practices; the reliability and maintenance strategy covering maintenance criticality analysis, reliability-centered maintenance (RCM), spare part standardization and turnaround planning for sulfolane units; and the standard operating procedure development and operator qualification matrix.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an advanced knowledge on universal oil products sulfolane technology
- Discuss sulfolane technology including process purpose and applications in aromatics extraction, key features of UOP's sulfolane process and integration into refinery and petrochemical complexes
- Explain physical and chemical properties of sulfolane, solubility of aromatics and non-aromatics, partition coefficient behavior and temperature and pressure dependency
- Recognize extraction column operation, stripping and solvent recovery sections, contaminants and degradation mechanisms and process chemistry
- Illustrate detailed process flow diagram (PFD), process and instrumentation diagram (P&ID) and major equipment design and operation
- Apply heat integration and energy optimization and discuss solvent circulation and makeup system including advanced process control (APC) and automation
- Employ startup and shutdown procedures covering step-by-step startup process, solvent preheating and loading, shutdown strategies for planned/unplanned stops and purging and equipment isolation
- Carryout operational troubleshooting, solvent quality and reclamation, hydraulic and flow distribution control, process optimization techniques and corrosion and material selection
- Explain key performance indicators (KPIs), simulation and modeling and operational data analysis
- Employ benchmarking and global best practices covering UOP plant performance benchmarks, comparative review of licensed facilities and upgrades and modernization trends
- Apply process safety, HAZOP methodology and critical nodes, fire and explosion prevention and emergency shutdown system design
- Carryout VOC emission control, wastewater and solvent recovery, regulatory requirements and monitoring and reporting best practices

PE1070 - Page 2 of 9

- Implement reliability and maintenance strategy covering maintenance criticality analysis, reliability-centered maintenance (RCM), spare part standardization and turnaround planning for sulfolane units
- Apply standard operating procedure development and operator qualification matrix

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced universal oil products sulfolane technology for process engineers, operations personnel, technical support staff, maintenance and reliability engineers, process design engineers, project engineers and managers, technology licensing and consulting professionals.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

<u>Accommodation</u>

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5.500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE1070 - Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• ACCREDITED

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

PE1070 - Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Dimitry Rovas, CEng, MSc, PMI-PMP, SMRP-CMRP is a Senior Engineer with extensive industrial experience in Oil, Gas, Power and Utilities industries. His expertise includes Gas Conditioning & Processing, Process Plant Optimization, Effective Production Operations in the Oil & Gas Fields, Advanced Process Safety Management (PSM), Process Equipment Design, Applied Process Engineering, Oil Production & Processing Facilities, Process Plant Optimization & Rehabilitation, Process Plant Troubleshooting & Engineering Problem Solving, Operations Abnormalities & Plant Upset, Glass Reinforced Plastics, GRP Resins, Pipe Products &

Applications, Pipe System Designs & Installation, Steel & Fiberglass Construction, **GRP Linings** & Method Application, **Rubber Com**pounding, Elastomers, Thermoplastic, Rubber Products, Rubber Manufacturing Systems, Heat Transfer, Industrial Vulcanization Methods, Energy Conservation, Energy Loss Management in Electricity Distribution Systems, Energy Saving, Thermal Power Plant Management, Thermal Power Plant Operation & Maintenance, Gas & Steam Turbines, Turbine Operations, Heat Transfer, Machine Design, Fluid Mechanics, Heating & Cooling Systems, Heat Insulation Systems, Heat Exchanger & Cooling Towers, Mechanical Erection, Heavy Rotating Equipment, HAZMAT & HAZCOM, Hazardous Materials & Chemicals **MSDS**, Modern Heating, Ventilation, Air-Conditioning (**HVAC**) & Refrigeration Systems, Emergency Air Compressors, Gas Turbine Condition Monitoring & Fault Diagnosis, Modern Valve Technology, Pumps & Valves, Detailed Engineering Codes & Standards, **Hydraulic** System Overhaul & Troubleshooting, **Hydraulic** System Design & Troubleshooting, **Boiler** Maintenance & Inspection, **Pipe Stress** Analysis, Material Unloading & Storage, Commissioning & Start-Up. Further, he is also well-versed in MS project & AutoCAD. EPC Power Plant. Power Generation. Combined Cycle Powerplant. Leadership & Mentoring, Project Management, Strategic Planning/Analysis, Construction Management, Team Formation, Relationship Building, Communication, Reporting and Six Sigma. He was the **Project Manager** wherein he was managing, directing and controlling all activities and functions associated with the domestic heating/cooling facilities projects.

During his life career, Mr. Rovas has gained his practical and field experience through his various significant positions and dedication as the **EPC Project Manager**, **Field Engineer**, **Preventive Maintenance Engineer**, **Researcher**, **Instructor/Trainer**, **Telecom Consultant** and **Consultant** from various companies such as the Podaras Engineering Studies, Metka and Diadikasia, S.A., **Hellenic Petroleum Oil Refinery** and COSMOTE.

Mr. Rovas is a Chartered Engineer of the Technical Chamber of Greece. Further, he has Master's degree in Mechanical Engineering and Energy Production & Management from the National Technical University of Athens. Moreover, he is a Certified Instructor/Trainer, a Certified Maintenance and Reliability Professional (CMRP) from the Society of Maintenance & Reliability Professionals (SMRP), a Certified Project Management Professional (**PMP**), а Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and a Certified Six Sigma Black Belt. He is an active member of Project Management Institute (PMI), Technical Chamber of Greece and Body of Certified Energy Auditors and has further delivered numerous trainings, seminars, courses, workshops and conferences internationally.

PE1070 - Page 5 of 9

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 12 th of October 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Sulfolane Technology Process Purpose and Applications in Aromatics Extraction • Key Features of UOP's Sulfolane Process • Comparison with Other Extraction Technologies • Integration into Refinery and Petrochemical Complexes
0930 - 0945	Break
0945 - 1030	Solvent Properties & Thermodynamics Physical and Chemical Properties of Sulfolane • Solubility of Aromatics and Non-Aromatics • Partition Coefficient Behavior • Temperature and Pressure Dependency
1030 - 1130	<i>Extraction Column Operation</i> <i>Column Configuration and Internals</i> • <i>Solvent-to-Feed Ratio Optimization</i> • <i>Flooding, Weeping, and Entrainment Control</i> • <i>Troubleshooting Common</i> <i>Problems</i>
1130 – 1215	Stripping & Solvent Recovery Sections Role of Extract and Raffinate Strippers • Solvent Regeneration Methods • Steam and Energy Balance Considerations • Recovery Unit Fouling and Mitigation
1215 – 1230	Break
1230 - 1330	Contaminants & Degradation Mechanisms Sources of Contaminants (e.g., Water, Oxygenates) • Thermal and Chemical Degradation of Sulfolane • Corrosion Risks and Byproduct Formation • Inhibitor and Additive Use
1330 – 1420	Process Chemistry Deep Dive Aromatics Solubility Mechanisms • Reaction Pathways of Sulfolane Degradation • Equilibrium Considerations • Impact of Process Impurities on Separation Efficiency
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Monday, 13th of October 2025 Day 2: Detailed Process Flow Diagram (PFD) Review Block and Detailed Process Flow Analysis • Material and Energy Balance 0730 - 0830 Explanation • Heat Exchanger Network • Key Operating Parameters Identification Process & Instrumentation Diagram (P&ID) Review Instrumentation Control Points and Logic • Interlocks and Safety Systems • 0830 - 0930 Control Valves, Analyzers, and Transmitters • Line Sizing and Pressure Drop Analysis 0930 - 0945 Break

PE1070 - Page 6 of 9

0945 - 1100	Major Equipment Design & OperationExtractors and Strippers • Heat Exchangers and Reboilers • Pumps andSolvent Circulation Systems • Degassing and Vent Systems
1100 - 1215	<i>Heat Integration & Energy Optimization</i> <i>Heat Exchanger Configuration (E1–E6) • Pinch Analysis Application • Steam</i> <i>System Interaction • Energy Loss and Recovery Points</i>
1215 – 1230	Break
1230 - 1330	Solvent Circulation & Makeup System Solvent Tank and Makeup Line Design • Circulation Pump Selection • Degassing Drum Operation • Makeup Injection Strategy
1330 - 1420	<i>Advanced Process Control (APC) & Automation</i> <i>Control Strategy for Sulfolane Extraction • APC Tuning Parameters • Alarms</i> <i>and Trip Settings • Automation for Startup, Shutdown, and Transition Phases</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 14 th of October 2025
0730 - 0830	Startup & Shutdown Procedures
	Step-by-Step Startup Process • Solvent Preheating and Loading • Shutdown
	Strategies for Planned/Unplanned Stops • Purging and Equipment Isolation
	Operational Troubleshooting
0830 - 0930	Off-Spec Raffinate or Extract • High Solvent Losses • Column Instability and
	Maldistribution • Equipment Vibration or Mechanical Failures
0930 - 0945	Break
	Solvent Quality & Reclamation
0945 – 1100	Criteria for Solvent Replacement • Laboratory Monitoring Techniques • In-
	Line Solvent Cleaning Options • Reclaiming Spent Sulfolane
	Hydraulic & Flow Distribution Control
1100 – 1215	Feed Distribution in Extractors • Managing Maldistribution • Tray/Packing
	Hydraulics and Fouling Detection • Vapor-Liquid Contact Efficiency
1215 – 1230	Break
	Process Optimization Techniques
1230 – 1330	Target Setting for Yield and Purity • Adjusting Solvent-to-Feed Ratio •
	Debottlenecking Analysis • Improving Selectivity and Efficiency
	Corrosion & Material Selection
1330 - 1420	Corrosive Agents and Critical Locations • Alloy and Lining Recommendations
1330 - 1420	Corrosion Monitoring Techniques • Maintenance Planning for Corrosion-
	Prone Areas
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

PE1070 - Page 7 of 9

Day 4:	Wednesday, 15 th of October 2025
0730 - 0830	Key Performance Indicators (KPIs)
	Extraction Efficiency • Solvent Loss Rate • Aromatic Content in Raffinate •
	Energy Consumption Metrics
	Simulation & Modeling
0830 - 0930	Use of Simulation Software (Aspen, HYSYS, UOP Models) • Building
0050 - 0550	Extraction and Regeneration Models • Sensitivity Analysis • Validation of
	Simulation with Field Data
0930 - 0945	Break
	Operational Data Analysis
0945 - 1100	Data Trending and Interpretation • Mass Balance Reconciliation • Detecting
	Gradual Performance Degradation • Root Cause Analysis of Performance Dips
	Case Study: Plant Optimization
1100 – 1215	Example of Solvent Loss Reduction • Yield Improvement Strategy • Feedstock
	Change Handling • Operator Training Outcome
1215 – 1230	Break
	Case Study: Troubleshooting & Recovery
1230 - 1330	Sudden Drop in Extract Purity • Water Ingress in Solvent System • Heat
	Exchanger Fouling Recovery • Startup Error and Quick Correction
	Benchmarking & Global Best Practices
1330 - 1420	UOP Plant Performance Benchmarks • Comparative Review of Licensed
1550 - 1420	Facilities • Upgrades and Modernization Trends • Lessons Learned from
	Global Operations
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Thursday, 16 th of October 2025
	Process Safety & HAZOP Review
0730 - 0830	Key Risks in Sulfolane Systems • HAZOP Methodology and Critical Nodes •
	Fire and Explosion Prevention • Emergency Shutdown System Design
	Environmental Compliance & Emissions
0830 - 0930	VOC Emission Control • Wastewater and Solvent Recovery • Regulatory
	Requirements • Monitoring and Reporting Best Practices
0930 - 0945	Break
	Debottlenecking & Revamp Projects
0945 – 1100	Capacity Enhancement Approaches • Equipment Replacement versus Upgrade
	Heat Integration for Expansion Minimizing Downtime During Revamp
	Reliability & Maintenance Strategy
1100 – 1215	Maintenance Criticality Analysis • Reliability-Centered Maintenance (RCM)
	• Spare Part Standardization • Turnaround Planning for Sulfolane Units
1215 – 1230	Break

PE1070 - Page 8 of 9

	Training, SOPs, & Operator Readiness
1230 - 1345	Standard Operating Procedure Development • Operator Qualification Matrix
	Control Room Operator Training Simulations Knowledge Transfer Tools
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE1070 - Page 9 of 9

