COURSE OVERVIEW RE0135 Maintenance Planning & Material Management

Course Title

Maintenance Planning & Material Management

Course Date/Venue

December 28 – January 01, 2026/Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey

Course Reference RE0135

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

1110 dayoro.o 0200700

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Maintenance Planning & Material Management. It covers the maintenance planning fundamentals and material management principles; the maintenance workflow and material flow, spare parts in maintenance and reliability-based planning; the maintenance planning tools and software, maintenance scheduling techniques, material requirement planning (MRP), work order planning and material allocation; the capacity and resource planning, maintenance shutdown/turnaround planning and inventory control systems; the spare parts forecasting techniques, warehouse operations and layout design; and the procurement interface and supply chain coordination.

During this interactive course, participants will learn the material preservation and storage practices, KPIs and reporting for inventory management and reliability-based spare parts strategy; the failure and root cause analysis for material issues, maintenance cost control, budgeting, material data integrity and documentation; the vendor relationship and performance evaluation, continuous improvement and lean practices; the integrated maintenance and material management systems; the performance measurement and improvement, handling requirements. temporary replacements and alternative materials: managing material traceability during emergencies; the material audit types, record retention, documentation control, reporting systems dashboards; and the role of material unit in ISO and asset integrity audits.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on maintenance planning and material management
- Discuss maintenance and material management, maintenance fundamentals and material management principles
- Recognize maintenance workflow and material flow, spare parts in maintenance and reliability-based planning
- Identify maintenance planning tools and software and apply maintenance scheduling techniques, material requirement planning (MRP), work order planning and material allocation
- Carryout capacity and resource planning, maintenance shutdown/turnaround planning and inventory control systems
- Employ spare parts forecasting techniques, warehouse operations and layout design including procurement interface and supply chain coordination
- Apply material preservation and storage practices, KPIs and reporting for inventory management as well as reliability-based spare parts strategy
- Identify failure and root cause analysis for material issues and apply maintenance cost control, budgeting, material data integrity and documentation
- vendor relationship and performance evaluation. continuous Carrvout improvement and lean practices and integrated maintenance and material management systems
- Implement performance measurement and improvement, handling urgent requirements, temporary replacements and alternative materials and managing material traceability during emergencies
- Recognize the material audit types, record retention and documentation control, reporting systems and KPI dashboards and the role of material unit in ISO and asset integrity audits

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of maintenance planning and material management for maintenance planners and schedulers, maintenance engineers and supervisors, reliability and asset management professionals, operations and plant engineers, shutdown and turnaround planners warehouse, inventory and material controllers, procurement and supply chain specialists, cost analysts and budget controllers and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Tony Dimitry, PhD, MSc, BSc, is a Senior Mechanical & Maintenance Engineer with over 30 years of industrial experience within the Petroleum, Oil & Gas, Petrochemical, Nuclear & Power industries. His expertise covers Maintenance Planning, Coordination & Scheduling, Material Management Principles, Spare Parts in Maintenance, Preventive Maintenance & Condition Monitoring, Reliability Centred Maintenance (RCM), Risk Based Inspection (RBI), Root Cause Analysis (RCA), Planning & Managing Plant Turnaround,

Scheduling Maintenance, Data Archive Maintenance, Master Milestone Schedule (MMS), Piping & Mechanical Vibration Analysis, Preventive & Predictive Maintenance (PPM) Maintenance, Condition Based Monitoring (CBM), Risk Based Assessment (RBA), Planning & Preventive Maintenance, Maintenance Management (Preventive, Predictive, Breakdown), Reliability Management, Rotating Equipment, Scheduling & Cost Control, Maximo Foundation, Maximo Managing Work, Asset Management Best Practices, Resource Management, Inventory Set-up & Management, Work Management, Automatic & Work Flows & Escalations, Vibration Analysis, Engineering Drawings, Engineering Drawings & Diagrams, AutoCAD & GIS Support, Retailed Engineering Drawings, Codes & Standards, Mechanical Diagrams Interpretation, Reading Engineering Drawings, Process & Project Drawings, Engineering Drawings Interpretation, Piping Layouts & Isometrics, P&ID Reading & Interpretation, Glass Reinforced Epoxy (GRE), Glass Reinforced Pipes (GRP), Glass Reinforced Vent (GRV), Mechanical Pipe Fittings, Flange Joint Assembly, Adhesive Bond Lamination, Butt Jointing, Joint & Spool Production, Isometric Drawings, Flange Assembly Method, Fabrication & Jointing, Jointing & Spool Fabrication, Pipe Cuttings, Flange Bolt Tightening Sequence, Hydro Testing, Failure Analysis Methodologies, Heat Exchanger, Siemens, Gas & Steam Turbine Maintenance, Pumps & Compressors, Turbo-Expanders, Fractional Columns, Boilers, Cryogenic Pumps for LNG, Electromechanical Maintenance, Machinery Alignment, Lubrication Technology, Bearing & Rotary Machine, Blower & Fan, Shaft Repair, Safety Relief Valves, Pipelines, Piping, Pressure Vessels, Process Equipment, Diesel Engine & Crane Maintenance, Tanks & Tank Farms, Pneumatic System, Static Equipment, FMEA, Corrosion, Metallurgy, Thermal and Electrical Modelling of Battery Problems. He is also well-versed in various simulators such as i-Learn Vibration, AutoCAD, Word Access, Aspen One, Fortran, VB, C ANSYS, ABAQUS, DYNA3D, Ceasar, Caepipe, MS Project, Primavera, MS Excel, Maximo, Automation Studio and **SAP.** Currently, he is the **Maintenance Manager** of the PPC Incorporation wherein he is responsible for the maintenance and upgrading of all Power Station components.

During his career life, Dr. Dimitry held a significant positions such as the **Operations Engineers**, **Technical Trainer**, **HSE Contracts Engineer**, **Boilers Section Engineer**, **Senior Engineer**, **Trainee Mechanical Engineer**, **Engineer**, **Turbines Section Head**, **Professor**, **Lecturer/Instructor** and **Teaching Assistant** from various multinational companies like **Chloride Silent Power Ltd.**, **Technical University of Crete**, **National Nuclear Corporation**, **UMIST Aliveri Power Station** and **HFO Fired Power Station**.

Dr. Dimitry has PhD, Master and Bachelor degrees in Mechanical Engineering from the Victory University of Manchester and the University of Newcastle, UK respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an associate member of the American Society of Mechanical Engineers (ASME) and Institution of Mechanical Engineers (IMechE). He has further delivered various trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 28th of December 2025

Day 1.	Sunday, 20 Or December 2020
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Maintenance & Material Management
0830 - 0930	Maintenance Objectives and Types (Corrective, Preventive, Predictive) • Role
0030 - 0930	of Material Management in Maintenance Efficiency • Maintenance-Stores-
	Procurement Interface • KPIs for Maintenance and Materials Coordination
0930 - 0945	Break
	Maintenance Planning Fundamentals
0945 - 1030	Planning Hierarchy (Strategic, Tactical, Operational) • Elements of a
0943 - 1030	Maintenance Plan • Work Request, Planning, and Scheduling Flow •
	Planner's Responsibilities and Daily Workflow
	Material Management Principles
1030 - 1130	Definition and Objectives of Material Management • Material Identification,
1030 - 1130	Classification and Coding Systems • Material Cataloguing and Standardization
	Techniques • Integration of Materials Data with CMMS/ERP
	Maintenance Workflow & Material Flow
1130 – 1215	Work Order System and Material Requisition Flow • Material Reservation,
1130 - 1213	Issuance, and Return Process • Coordination Between Planner and Storekeeper
	Material Traceability and Documentation
1215 - 1230	Break
	Understanding Spare Parts in Maintenance
1230 - 1330	Types of Spare Parts (Critical, Consumables, Rotables) • Criticality Analysis of
1230 - 1330	Spare Parts • Spare Part Planning Methods (ABC, VED, XYZ) • Lead Time
	and Procurement Cycle Understanding

1330 – 1420	Basics of Reliability-Based Planning Reliability-Centered Maintenance (RCM) Principles • Asset Hierarchy and Reliability Modeling • Equipment History and Failure Trends • Planning Materials for Reliability Improvement
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 29 th of December 2025
0730 - 0830	Maintenance Planning Tools & Software
	Overview of CMMS, SAP PM, Maximo and Oracle EAM • Work Order
	Generation and Tracking • Linking Spare Parts and BOM in CMMS • Digital
	Dashboards for Maintenance KPIs
	Maintenance Scheduling Techniques
0830 - 0930	Short-Term and Long-Term Scheduling • Gantt Charts and Resource Leveling
0030 - 0330	• Integrating Labor, Tools and Material Availability • Weekly and Daily
	Maintenance Coordination Meetings
0930 - 0945	Break
	Material Requirement Planning (MRP)
0945 – 1100	Principles of MRP and its Inputs (BOM, Lead Time, Stock) • Exploding
0943 - 1100	Demand and Net Requirements • Aligning MRP with Preventive Maintenance
	Plans • Case Study on MRP Implementation
	Work Order Planning & Material Allocation
1100 – 1215	Identifying Material Needs per Job • Work Order Kitting and Staging •
1100 - 1215	Managing Shortages and Substitutions • Coordination with Procurement and
	Warehouse
1215 – 1230	Break
	Capacity & Resource Planning
1230 – 1330	Resource Balancing Between Manpower and Material • Planning Spare Parts
1230 - 1330	for Planned Shutdowns • Material Availability for Critical Jobs • Aligning
	Maintenance and Production Schedules
	Maintenance Shutdown/Turnaround Planning
1330 – 1420	Planning Phases (Initiation, Preparation, Execution, Closeout) • Material List
1550 - 1420	and Pre-Ordering Process • Temporary Storage and Logistics • Post-
	Turnaround Evaluation and Lessons Learned
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 30th of December 2025

, _	•	, ,
0730 – 0830	Inventory Control Systems	
	Objectives and Challenges in Inventory Management • Inventory Types and	
	Classifications • Inventory Accuracy and Stock Reconciliation • Controlling	
	Obsolete and Surplus Materials	
0830 - 0930	Spare Parts Forecasting Techniques	
	Historical Consumption Analysis • Statistical Forecasting Methods (Moving	
	Average, Exponential Smoothing) • Failure Rate-Based Forecasting •	
	Integration with Predictive Maintenance Data	

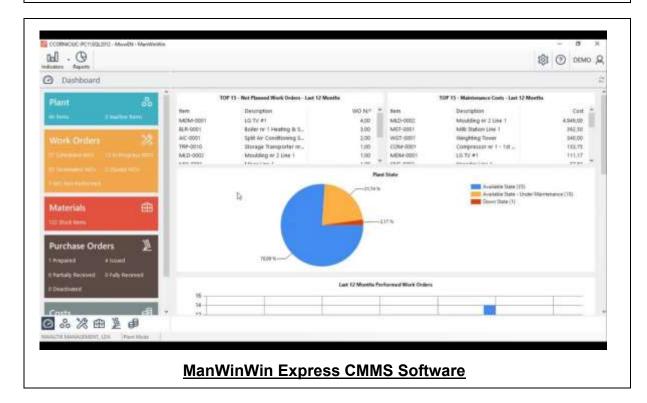
0930 - 0945	Break
0945 – 1100	Warehouse Operations & Layout Design
	Zoning and Layout for Maintenance Spares • FIFO/LIFO Management and
	Material Handling • Safety Stock and Reorder Point Calculations • Visual Management and 5S Implementation
	e i
	Procurement Interface & Supply Chain Coordination
1100 - 1215	Requisition-to-Purchase Process Overview • Vendor Selection and
	Qualification • Coordination Between Planner, Buyer and Storekeeper •
	Expediting Material Delivery and Follow-Up Techniques
1215 – 1230	Break
	Material Preservation & Storage Practices
1230 – 1330	Storage Requirements for Mechanical, Electrical, and Instrumentation Spares •
1230 - 1330	Preservation Techniques for Long-Term Storage • Humidity, Temperature, and
	Contamination Control • Inspection and Periodic Maintenance of Stored Items
	KPIs & Reporting for Inventory Management
1220 1420	Inventory Turnover Ratio and Service Level • Stockout and Overstock
1330 – 1420	Analysis • Cost of Inventory and Optimization Metrics • KPI Dashboard for
	Material Unit Supervisors
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 31st of December 2025

0730 – 0830	Reliability-Based Spare Parts Strategy MTBF and MTTR Influence on Spare Stock • Risk-Based Inventory Approach • Critical Equipment Material Planning • Using Reliability Data for Procurement Forecasting
0830 - 0930	Failure & Root Cause Analysis for Material Issues Common Causes of Material Unavailability • RCA Tools (Fishbone, 5-Why, Pareto) • Case Studies on Spare Parts-Related Failures • Action Planning and Corrective Measures
0930 - 0945	Break
0945 – 1100	Maintenance Cost Control & Budgeting Cost Breakdown Structure for Maintenance • Budgeting Spare Parts and Consumables • Tracking Material Cost per Work Order • Variance Analysis and Cost Optimization
1100 – 1215	Material Data Integrity & Documentation Master Data Governance and Coding Discipline • Duplicate and Obsolete Materials Elimination • Linking Asset Hierarchy to Material Hierarchy • Audit and Traceability of Materials
1215 - 1230	Break
1230 - 1330	Vendor Relationship & Performance Evaluation Supplier Performance Monitoring and Rating • Framework Agreements for Critical Spares • Vendor-Managed Inventory (VMI) Concepts • Local vs. Global Sourcing Decisions

1330 – 1420	Continuous Improvement & Lean Practices Lean Maintenance Principles • 5S and Kanban in Spare Parts Management • Reducing Waste in Planning and Material Handling • Benchmarking and Best Practices Sharing
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Friday, 01 st of January 2026
0730 – 0830	Integrated Maintenance & Material Management Systems
	Linking Planning, Procurement and Warehousing Systems • CMMS
	Integration with ERP and Financial Systems • Data Analytics and Dashboards
	for Decision-Making • Case Study: Integrated Planning Implementation
	Performance Measurement & Improvement
0830 - 0930	KPIs for Planners and Material Supervisors • Tracking Backlog, Service Level,
0030 - 0930	and Turnaround Time • Setting Targets and Continuous Improvement Cycles
	Team Performance Reviews
0930 - 0945	Break
	Case Study Workshop: Planning & Material Coordination
0945 - 1100	Developing a Work Plan with Materials Requirement • Identifying Bottlenecks
0943 - 1100	and Improvement Actions • Role-Based Group Exercise (Planner, Storekeeper,
	Supervisor) • Presentation and Feedback Session
	Emergency & Breakdown Material Planning
1100 – 1215	Handling Urgent Requirements • Fast-Tracking Procurement and Logistic
1100 - 1213	Support • Temporary Replacements and Alternative Materials • Managing
	Material Traceability During Emergencies
1215 - 1230	Break
	Audit, Compliance & Documentation
1230 - 1345	Material Audit Types (Internal, External, Compliance) • Record Retention and
1230 - 1343	Documentation Control • Reporting Systems and KPI Dashboards • Role of
	Material Unit in ISO and Asset Integrity Audits
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about t
	Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "MTBF Calculator" and "ManWinWin Express CMMS Software".

MTBF Calculator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

