

COURSE OVERVIEW RE0019
Certified Maintenance & Reliability Technician (CMRT)
(SMRP Exam Preparation Training)

Course Title

Certified Maintenance & Reliability Technician
(CMRT) (SMRP Exam Preparation Training)

Course Date/Venue

Please refer to page 3

Course Reference

RE0019

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Certified Maintenance & Reliability Technician (SMRP-CMRT). It covers the maintenance and reliability, hazard classification and control; the risk concepts and assessment, HIRA (hazard identification and risk assessment) procedure and information security and vulnerability in maintenance; the personal protective equipment (PPE), engineering metrology and corrective and reactive maintenance; and the hand tools, shop equipment and torque wrenches.

During this interactive course, participants will learn the maintenance planning and scheduling, computerized maintenance management system and oil lubrication management; the oil analysis, product storage and handling; the equipment failure and mechanisms of failure; the equipment criticality assessment (ECA), alignment and balancing; the bearings, reliability centered maintenance, NDT methods and control of hazardous substances; and the exam structure, strategy and exam domains.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the next CMRT exam and have enough knowledge and skills to pass such exam in order to get Certified Maintenance and Reliability Technician (CMRT) certification from the Society for Maintenance and Reliability Professionals (SMRP)
- Discuss maintenance and reliability, hazard classification and control
- Carryout risk concepts and assessment, HIRA (hazard identification and risk assessment) procedure and information security and vulnerability in maintenance
- Apply personal protective equipment (PPE), engineering metrology and corrective and reactive maintenance
- Recognize hand tools, shop equipment and torque wrenches
- Apply maintenance planning and scheduling, computerized maintenance management system and oil lubrication management
- Carryout oil analysis, product storage and handling as well as discuss equipment failure and mechanisms of failure
- Apply equipment criticality assessment (ECA), alignment and balancing
- Identify bearings and carryout reliability centered maintenance, NDT methods and control of hazardous substances
- Discuss exam structure, strategy and exam domains

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of certified maintenance and reliability technician for maintenance technicians and mechanics, reliability and maintenance specialists, plant and operations technicians, condition monitoring and inspection personnel, electrical and mechanical technicians, junior engineers, maintenance supervisors and team leaders, asset and facilities management personnel and other technical staff.

Course Date/Venue

Session(s)	Date	Venue
1	February 01-05, 2026	Crowne Meeting Room, Crowne Plaza Al Khobar, an IHG Hotel, Al Khobar, Kingdom of Saudi Arabia
	March 29-April, 2026	
2	April 19-23, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
3	July 20-24, 2026	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	October 25-29, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

SMRP-CMRT

(1) SMRP-CMRT certificates will be issued to participants who have successfully passed the SMRP-CMRT examination.

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

- [Society for Maintenance & Reliability Professionals \(SMRP\)](#)

The course instructor is certified by **The Society for Maintenance & Reliability Professionals (SMRP)** to deliver and administer its internationally-recognized qualifications and certification programs on Maintenance & Reliability Best Practices. **SMRP** is a nonprofit professional society formed by practitioners to advance the reliability and physical asset management industry and to create leaders in the field. SMRP provides unparalleled value for individual practitioners looking to expand their knowledge and skills in maintenance and reliability and build more business connections with other practitioners.

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Fred Jacobus, MEng, BEng, CMRP, is a **Senior Maintenance & Reliability Engineer** with extensive experience within the **Oil & Gas, Refinery and Petrochemical** industries. His wide expertise includes Reliability Centered Maintenance (**RCM**), Reliability Engineering Analysis, **Reliability Engineering Data Analysis & Modelling**, Excellence in Maintenance & Reliability Management, **Equipment Reliability & Maintenance**, **Preventive & Predictive Maintenance**, **Maintenance & Resource Planning**, **Maintenance Strategy**, Asset Integrity Management (**AIM**), Root Cause Analysis (**RCA**), **Maintenance Auditing**, **Maintenance & Reliability** Operations & Performance Indicators, **Machinery Repair & Maintenance**, **Maintenance Planning & Control**, Spares Management & Optimisation, **Reciprocating Extrusion Blow Moulders**, **Howden Compressors**, Maintenance Optimization & Best Practices, **Vibration Monitoring System**, **Machinery Vibration Analysis**, **Pressure Vessel Maintenance & Inspection**, **Incident Investigation**, Defect Elimination, **Bently Nevada**, **Blow Moulders**, Pump Operation & Maintenance, **Physical Asset Management**, **Reciprocating & Centrifugal Compressors**, Hazard & Operability, Sound Engineering Practice (**SEP**) Inspection & Repair, **Rotatory Equipment Maintenance Strategies**, Risk Assessment Procedures, Critical Rotatory Equipment, Systems Applications and Products (**SAP**), PRAGMA Asset Management System and CMMS software.

Mr. Jacobus gained his practical and field experience through his various significant positions and dedication as the **Production Manager**, **Area Manager**, **Asset Care Manager**, **Regional Mechanical Engineer & Services Manager**, **Senior Reliability Engineer**, **Divisional Maintenance Engineer**, **Maintenance Engineer**, **Junior Mechanical Engineer**, **Associate Consultant** and **Senior Instructor/Trainer** for numerous international companies such as the Collaborit, Prgama, Polyoak Packaging (Pty) Ltd and National Petroleum Refiners of SA (NATREF).

Mr. Jacobus has a **Master of Engineering (MEng)** in **Engineering Management** and **Bachelor of Engineering (BEng)** in **Mechanical Engineering**. Further, he is a Certified Maintenance and Reliability Professional (**CMRP**) from the Society of Maintenance & Reliability Professionals (**SMRP**) and a **Certified Instructor/Trainer**. He is also an active member of Maintenance and Reliability Professionals and Golden Key International Society and has further delivered numerous trainings, courses, seminars, workshops and conference internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Training Fee

Al Khobar	US\$ 6,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 6,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 6,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 6,000 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Exam Fee

US\$ 400 per Delegate + VAT.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	Registration & Coffee
0800 – 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
0830 – 0930	Introduction to Maintenance & Reliability The Society of Maintenance and Reliability Professionals • Role of CMRT in Asset-Intensive Industries • Benefits of Certification for Technicians and Organizations • Definition of Maintenance, Reliability, Availability • Types of Maintenance • Asset Management
0930 – 0945	Break

0945 – 1030	Hazard Classification & Control What is a Hazard? Definitions and Examples • Hazard Categories and Sources in Maintenance Environments • What is Risk • Consequence Categories
1030 – 1100	Risk Concepts & Assessment Risk Assessments • Risk Significance and its Relation to Reliability • Basic Steps of Quantitative Risk Assessment (QRA) • ALARP Assessment Criteria • Risk Matrix and Qualitative Risk Assessment Tools • Using Risk Assessment Logic Diagrams
1100 – 1130	Industrial Accidents & Case Studies Industrial Accidents • Case Studies • Compounding Effects and Major Consequences • Bhopal Gas Tragedy – Lessons Learned
1130 – 1215	HIRA (Hazard Identification & Risk Assessment) Procedure Steps in HIRA Application • Building a Qualitative Risk Assessment Matrix • Application of ALARP (As Low As Reasonably Practicable) • Case-Based Application in Maintenance Tasks
1215 – 1230	Break
1230 – 1330	Information Security & Vulnerability in Maintenance Threat versus Vulnerability in Operational Systems • Information Security Concepts for Technicians • Accidental Events Leading to Operational Failure • Mitigation Measures for Critical Systems • LOTO
1330 – 1420	Personal Protective Equipment (PPE) Introduction to Personal Protective Equipment • PPE Requirements • Guidance on Standards for PPE
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 – 0830	Engineering Metrology Errors during Measurement • Classification of Measuring Instruments • Precision/Non-Precision Instruments • How to Read the Vernier Caliper
0830 – 0930	Corrective & Reactive Maintenance How to Read the Micrometer • Filler Gauge • Dial Gauge/Indicator • Calipers • Vernier Bevel Protractor • Care of Precision Measuring Instruments • Tolerance • Types of Fits
0930 – 0945	Break
0945 – 1100	Hand Tools & Shop Equipment Units of Measure • Bolt Identification • Technician's Tools • Workshop Tools • Hand Tool Safety
1100 - 1215	Torque Wrenches The Definition of Torque • Effects of Friction on a Joint • Torque Wrench • Torque Wrench Selection • Hard Joint versus Soft Joint • Proper Tightening Sequence of Flanges • Torque Wrench Safety
1215 – 1230	Break

1230 – 1420	Maintenance Planning & Scheduling Planning versus Scheduling – Key Distinctions • Role of Planner/Scheduler in Reliability • Job Packages and Work Orders • KPIs for Planning and Scheduling Effectiveness
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 – 0930	Computerized Maintenance Management System What Returns can be Expected • What should CMMS do • CMMS – Basic Functions • Hierarchies • Taxonomy • Using CMMS/EAM Systems Effectively
0930 – 0945	Break
0945 – 1100	Oil Lubrication Management Friction • Effects of friction • Purpose of Lubrication System • Types of Lubricants • Properties of lubricants • Viscosity • Pour Point • Flash Point • Oil Additives • Grades of Motor Oil • Greases • Best Practices for Equipment Lubrication
1100 – 1215	Oil Analysis Oil Analysis as a Predictive Maintenance Method • Benefits • Oil and Wear Particle Analysis • Lube Oil Deterioration • Moisture • Wear Particle Count • Hydraulic Oil Cleanliness • TAN • TBN • Spectrometric Metals Analysis • Infrared Spectroscopy • Analytical Ferrography • Rotating Bomb Oxidation Test (RBOT) • Sampling Methods
1215 – 1230	Break
1230 – 1420	Product Storage & Handling Good Storage and Handling • Outdoor Storage • Outdoor Storage
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0830	Equipment Failure What is a Failure? • The P-F Curve Concept • Equipment Failure Patterns • Fundamental Causes of Failures
0830 – 0930	Mechanisms of Failure Physical Causes • Fatigue • Thermal Shock • Creep • Wear • Erosion • Corrosion • Fouling • Rubbing
0930 – 0945	Break
0945 – 1100	Equipment Criticality Assessment (ECA) What is Equipment Criticality Assessment • Why do you Need ECA • What Makes an Equipment Critical • ECA Methodology
1100 – 1215	Alignment What's Shaft Alignment • Sources of Misalignment • Types of Misalignments • Effects of misalignment • Misalignment Detection • Foundation • Setting and Levelling • Soft Foot • Alignment Tools • Reverse Dial Method • Face and Rim Method • Lazer Alignment
1215 – 1230	Break

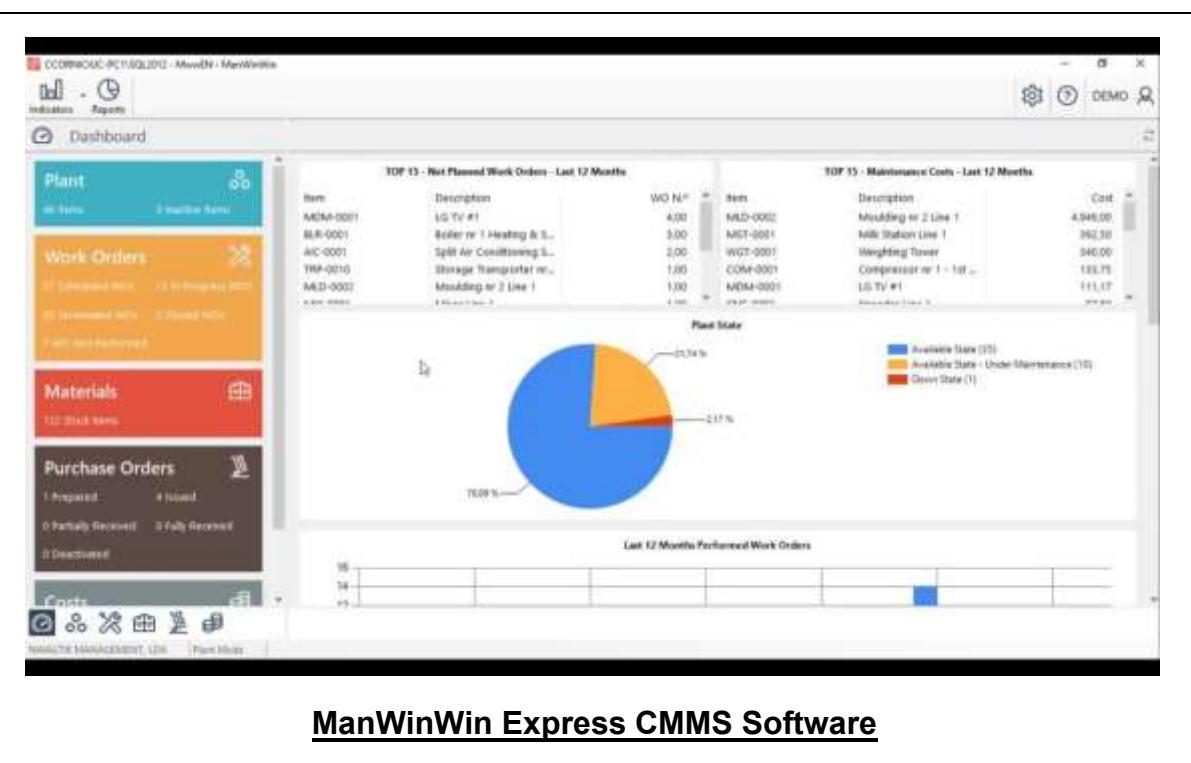
1230 – 1420	Balancing Definition of Unbalance • Vibration due to Unbalance • Flexible Rotors • Causes of Unbalance • Single Plain Balancing • Two Plane Balancing • Recommendations for Balancing
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 – 0830	Introduction to Bearings Plain VS Rolling Element Bearings • Plain Bearing Materials • Plain Bearing Lubrication • Rolling Element Bearings • Bearing Life • Recommended Shaft Fits for Radial Bearings • Bearing Designations • Bearing Installation • Bearing Failures
0830 – 0930	Reliability Centered Maintenance RCM Questions • RCM Algorithm • RCM Worksheets • PdM Methods • RCM Process
0930 – 0945	Break
945 -1030	NDT Methods Dye Penetrant (PT) • Eddy Current • Ultrasonic Testing • Radiographic Examination
1030 – 1130	Control of Hazardous Substances Powered Industrial Trucks
1130 – 1215	Exam Structure & Strategy Exam Format and Scoring Breakdown • Time Management During the Exam • Handling Difficult Questions • Use of SMRP Body of Knowledge
1215 – 1230	Break
1230 – 1300	Mock Exam & Question Review Practice Exam Session • Review of Answers and Explanations • Identifying Knowledge Gaps • Techniques for Improving Weak Areas
1300 – 1345	Overview of SMRP CMRT Exam Domains Maintenance Practices Domain (32%) • Preventive & Predictive Maintenance Domain (29%) • Troubleshooting & Analysis Domain (20%) • Corrective Maintenance Domain (19%)
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

MOCK Exam

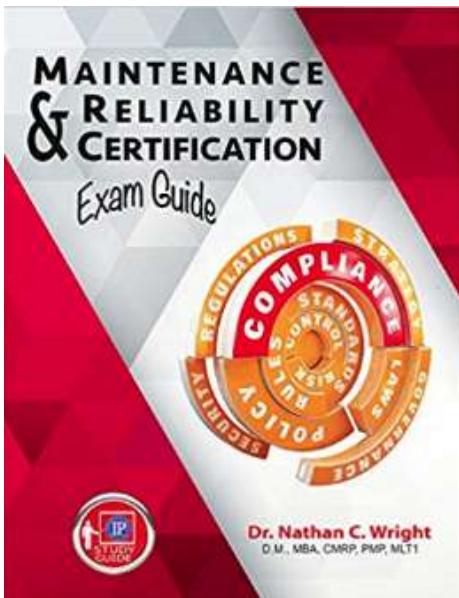
Upon the completion of the course, participants have to sit for a MOCK Examination similar to the exam of the Certification Body through Haward's Portal. Each participant will be given a username and password to log in Haward's Portal for the MOCK Exam during the 60 days following the course completion. Each participant has only one trial for the MOCK exam within this 60-day examination window. Hence, you have to prepare yourself very well before starting your MOCK exam as this exam is a simulation to the one of the Certification Body.



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator “MTBF Calculator” and “ManWinWin Express CMMS Software”.

MTBF Calculator



ManWinWin Express CMMS Software

Book(s)

As part of the course kit, the following e-book will be given to all participants:

Title : Maintenance & Reliability Certification Exam Guide
ISBN : 9780831136239
Author : Dr. Nathan C. Wright
Publisher : Industrial Press, Inc.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org