

COURSE OVERVIEW ME0075
Process Control Valves & Actuators
Sizing, Selection, Installation & Maintenance

Course Title

Process Control Valves & Actuators: *Sizing, Selection, Installation & Maintenance*

Course Date/Venue

June 14-18, 2026/TBA Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Reference

ME0075

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Practical sessions will be organized during the course using our state-of-the-art simulators and our cutting-edge Virtual Reality (VR) and Augmented Reality (AR) technologies to provide participants with a highly immersive and interactive learning experience.

It is claimed that the majority of control valves throughout the world have not been correctly sized and that large numbers operate on manual mode. Whether this is true or not is difficult to establish but we do know that the method of sizing and selecting a control valve for a specific application is generally not well understood. Although there are many factors that need to be taken into account the subject is not difficult to understand if dealt with in a logical manner. We also find that many maintenance problems result from people treating the symptoms of a problem rather than tackling the true cause – a basic understanding of the principles is all that is usually needed to solve the problem for good.

This course is designed to provide participants with a detailed and an up-to-date overview of control valve sizing, selection, operation, testing, maintenance and troubleshooting. It covers the valve characteristics and trim selection; the process of control valve sizing; the control valve accessories such as auxiliary hand-wheels, pressure regulators, position transmitters, volume booster, limit switches and solenoid valves; and the process of control valve selection.

Further, the course will also discuss the control valve performance which includes process variability, actuator-positioner design, valve type, sizing, response and characterization; the common valve problems and its solutions; the use of system approach to prevent the occurrences of the problems; the different operational issues of control valves and actuators; the various control valve failures and their potential causes; the field communications and its importance; the practical application on control valves and actuators; the development, features and functions of smart valves and positioners; the diagnostic testing in valves; and the fire safe valves.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Discuss the valve characteristics and trim selection and illustrate the process of control valve sizing
- Recognize the process consideration in control valves and actuators particularly the materials selection, modes of failure, leakage rates and international standards
- Identify the control valve accessories such as auxiliary hand-wheels, pressure regulators, position transmitters, volume booster, limit switches and solenoid valves and describe the process of control valve selection
- Apply operation checks covering control valves performance, t63, response, dead and dynamic time
- Employ control valve performance which includes process variability, actuator-positioner design, valve type, sizing, response and characterization
- Analyze common valve problems and present various solutions and use system approach to prevent the occurrences of the problems
- Review and improve the different operational issues of control valves and actuators and determine the various control valve failures and their potential causes
- Implement the three (3) approaches to control valve maintenance covering reactive, preventive and predictive
- Employ the immediate maintenance or repairing action in case of any discrepancies
- Recognize field communications and its importance and employ practical application on control valves and actuators
- Identify development, features and functions of smart valves and positioners and apply diagnostic testing in valves
- Explain fire safe valves by discussing its standards, examples, sealing and leakage

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of control valves and actuators for those involved in the sizing, selection, operation, testing, maintenance and troubleshooting of such equipment. This includes control valve and plant safety specialists, instrumentation and control engineers, electrical engineers, project engineers, process control engineers, consulting engineers, maintenance engineers, maintenance planners and systems engineers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

- [British Accreditation Council \(BAC\)](#)

Haward Technology is accredited by the **British Accreditation Council for Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

- [The International Accreditors for Continuing Education and Training \(IACET - USA\)](#)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units (CEUs)** in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Tony Dimitry, PhD, MSc, BSc, is a **Senior Mechanical & Maintenance Engineer** with over **30 years** of industrial experience within the **Petroleum, Oil & Gas, Petrochemical, Nuclear & Power** industries. His expertise covers **Valves Selection, Installation & Maintenance, Valve Technology, Safety, Safety Relief Valve Sizing, Operation, Testing, Maintenance & Troubleshooting, Heat Exchanger Operation, Maintenance & Repair, Heat Exchanger Analysis, Shell & Tube Heat Exchangers, Engineering Drawings, AutoCAD & GIS Support**, Retailed **Engineering Drawings, Codes & Standards, Mechanical Diagrams Interpretation, Reading Engineering Drawings, Process & Project Drawings, Engineering Drawings Interpretation, Piping Layouts & Isometrics, P&ID Reading & Interpretation, Glass Reinforced Epoxy (GRE), Glass Reinforced Pipes (GRP), Glass Reinforced Vent (GRV), Mechanical Pipe Fittings, Flange Joint Assembly, Adhesive Bond Lamination, Butt Jointing, Joint & Spool Production, Isometric Drawings, Flange Assembly Method, Fabrication & Jointing, Jointing & Spool Fabrication, Pipe Cuttings, Flange Bolt Tightening Sequence, Hydro Testing, Failure Analysis Methodologies, Machinery Root Cause Failure Analysis (RCFA), Preventive Maintenance & Condition Monitoring, Reliability Centred Maintenance (RCM), Risk Based Inspection (RBI), Root Cause Analysis (RCA), Planning & Managing Plant Turnaround, Scheduling Maintenance, Data Archive Maintenance, Master Milestone Schedule (MMS), Piping & Mechanical Vibration Analysis, Preventive & Predictive Maintenance (PPM) Maintenance, Condition Based Monitoring (CBM), Risk Based Assessment (RBA), Planning & Preventive Maintenance, Maintenance Management (Preventive, Predictive, Breakdown), Reliability Management, Rotating Equipment, Scheduling & Cost Control, Maximo Foundation, Maximo Managing Work, Asset Management Best Practices, Resource Management, Inventory Set-up & Management, Work Management, Automatic & Work Flows & Escalations, Vibration Analysis, Heat Exchanger, Siemens, Gas & Steam Turbine Maintenance, Pumps & Compressors, Turbo-Expanders, Fractional Columns, Boilers, Cryogenic Pumps for LNG, Electromechanical Maintenance, Machinery Alignment, Lubrication Technology, Bearing & Rotary Machine, Blower & Fan, Shaft Repair, Safety Relief Valves, Pipelines, Piping, Pressure Vessels, Process Equipment, Diesel Engine & Crane Maintenance, Tanks & Tank Farms, Pneumatic System, Static Equipment, FMEA, Corrosion, Metallurgy, Thermal and Electrical Modelling of Battery Problems.** He is also well-versed in various simulators such as i-Learn Vibration, AutoCAD, Word Access, Aspen One, Fortran, VB, C ANSYS, ABAQUS, DYNA3D, Ceasar, Caepipe, MS Project, Primavera, MS Excel, Maximo, Automation Studio and SAP. Currently, he is the **Maintenance Manager** of the PPC Incorporation wherein he is responsible for the maintenance and upgrading of all **Power Station** components.

During his career life, Dr. Dimitry held a significant position such as the **Operations Engineers, Technical Trainer, HSE Contracts Engineer, Boilers Section Engineer, Senior Engineer, Trainee Mechanical Engineer, Engineer, Turbines Section Head, Professor, Lecturer/Instructor and Teaching Assistant** from various multinational companies like Chloride Silent Power Ltd., Technical University of Crete, National Nuclear Corporation, UMIST Aliveri Power Station and HFO Fired Power Station.

Dr. Dimitry has **PhD, Master and Bachelor** degrees in **Mechanical Engineering** from the **Victory University of Manchester** and the **University of Newcastle, UK** respectively. Further, he is a **Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an associate member of the American Society of Mechanical Engineers (**ASME**) and Institution of Mechanical Engineers (**IMechE**). He has further delivered various trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 10% Practical Workshops & Work Presentations
- 10% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos
- 30% VR/AR Hands-on Practical Application

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 14th of June 2026

0730 – 0800	Registration & Coffee
0800 – 0815	Welcome & Introduction
0815 – 0830	PRE-TEST
0830 – 0900	Review of Course Objectives of Course • Timetables
0900 – 0915	Break
0915 – 1030	Control Valve Theory - Basic Principles Introduction • Definition of a Control Valve • Types of Energy • What is Happening Inside a Control Valve • Choked Flow • Cavitation • Flashing
1030 – 1100	Video Presentation
1100 – 1200	Control Valve Types Rotary • Linear
1200 – 1230	Video Clips
1230 – 1245	Break
1245 – 1330	Characteristics & Trims Valve Characteristics • Application Examples • Cavitation Control • Anti-Cavitation Trim • High Pressure Drop-Applications • Low Noise Trim • Diffusers
1330 – 1420	Control Valve Sizing General • Valve Coefficient (Cv) • Simplified Sizing Equation • Comparison of Valve Types • Turnaround vs Rangeability
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:

Monday, 15th of June 2026

0730 – 0900	Process Considerations End Connections • Face to Face Criteria • Materials Selection • Modes of Failure • Leakage Rates • International Standards
0900 – 0915	Break
0915 – 0945	Video Clips
0945 – 1100	Actuators & Positioners Types of Actuators • Linear Actuators • Rotary Actuators • Actuator Forces • Positioners • Fail Safe Actuators
1100 – 1230	Video Clips
1230 – 1245	Break
1245 – 1315	Accessories Auxiliary Hand-wheels • Pressure Regulators • Lock-up Valves • ON-OFF Valve • Position Transmitters • Volume Boosters • Limit Switches • Solenoid Valves
1315 – 1400	Control Valve Selection Introduction • Decision Criteria • Materials of Construction • Valve Characteristics • Actuator Considerations • Price Comparison • Selection Guidelines • Application Comparisons • Computer Sizing Programmes • Summary
1400 – 1420	Video Clip
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:

Tuesday, 16th of June 2026

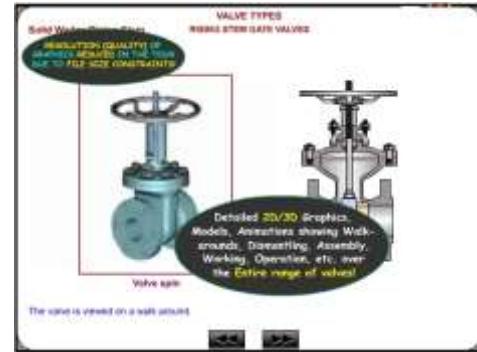
0730 – 0800	Operational Issues General Review • Installation • Maintenance • Troubleshooting • Corrosion • Galling
0800 – 0900	Operation Checks Control Valve Performance Characteristics – Dead Band • T63 • Response • Dead • Dynamic Time
0900 – 0915	Break
0915 – 1100	Control Valve Performance Process Variability • Dead Band • Actuator/Positioner Design • Valve Response Time • Valve Type & Characterisation • Valve Sizing
1100 – 1230	Common Valve Problems Water Hammer Effects • High Noise Levels • Noise Attenuation • Fugitive Emissions
1230 – 1245	Break
1245 – 1330	Control Valve Failures & Potential Causes Introduction • Physical Failures • Velocity Problems • Erosion by Cavitation • Erosion by Abrasion • Noise • Vibration
1330 – 1420	The Three Approaches to Control Valve Maintenance Reactive • Preventive • Predictive
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 17th of June 2026

0730 – 0800	Immediate Maintenance or Repairing Action in Case of Any Discrepancies Disassembly Protocols • Critical Inspection • Lapping & Grinding • Assembly Clearances Setting • Pressure Testing & Sealing
0800 – 0900	Field Communications Analogue Signals • Digital Communications • Fieldbus Technologies
0900 – 0915	Break
0915 – 0945	Video Presentation
0945 – 1230	SMART Valves & Positioners Introduction • Development • Digital Valve Controllers • Case Study • Future Development
1230 – 1245	Break
1245 – 1420	Proof Testing & Diagnostic Safety Instrumented Systems – An Overview • Proof Testing • Partial Valve Stoking • Diagnostics
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5: Thursday, 18th of June 2026

0730 – 0900	Fire Safe Valves Introduction • Requirements • Sealing & Leakage • Design Standards & Testing • Examples
0900 – 0915	Break
0915 – 1100	Addendum Typical Example • Choke Valve • Other Subjects
1100 – 1230	Practical Exercises
1230 – 1245	Break
1245 – 1345	Computer Sizing Programme Simple Water • Simple Air • High Pressure Drop Water • H ₂ SO ₄
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulators (Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators “Valve Sizing Software”, “Valve Software 3.0”, “Valvestar 7.2 Software” and “PRV2SIZE Software” and our VR/AR Applications.

Valve Sizing Software

Valve Software 3.0

Valvestar 7.2 Software

PRV2SIZE Software

Virtual Reality (VR) and Augmented Reality (AR) Practical Sessions

Practical sessions will be organized during the course using cutting-edge Virtual Reality (VR) and Augmented Reality (AR) technologies to provide participants with a highly immersive and interactive learning experience. Through VR headsets and AR-enabled devices, delegates will be able to simulate real-world scenarios in a safe and controlled virtual environment, allowing them to practice the theories and techniques learned in class. Participants will engage in realistic, hands-on exercises such as operating equipment, performing inspections, troubleshooting systems and responding to simulated incidents that closely replicate actual field conditions. This advanced training approach enhances understanding, improves decision-making skills and builds confidence by bridging the gap between theoretical knowledge and real-world application.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org