COURSE OVERVIEW ME0447 Rotating Equipment: Start-up, Operation, Maintenance and **Troubleshooting**

Course Title

Rotating Equipment: Start-up, Maintenance and Troubleshooting

Operation,

Course Date/Venue

February 08-12, 2026/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE or, Online Virtual Training

Course Reference MF0447

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to cover the selection, operation, maintenance, inspection and troubleshooting of the types of rotating equipment compressors, pumps, motors, turbines, turbo-expanders, gears and transmission equipment. The course will feature a unique blend of practical application experience and basic analysis methods. Its aim is to convey a understanding machinery thorough of operating principles, equipment and specific operations.

The course will cover the principal machines represented at a large number of plants. There will be a thorough examination of basic operating concepts, application ranges, selection criteria, maintenance, inspection and vulnerabilities of certain types of equipment. The course will also review the short-cut selection and sizing methods for fluid machinery.

Upon the successful completion of this course, participants will have gained an understanding of the 12 principal types of machinery used in industry. They will understand the differences between electric motors, design peculiarities, advantages and disadvantages of different types of gears, operating principles of gas turbines and reciprocating gas engines.

The course will convey an understanding of impulse vs. reaction turbines, insights into application ranges, limitations, maintenance and operability constraints for different kinds of pumps, compressors and dynamic gas machinery such as turbo-machinery as opposed to displacement machinery.

The course includes an e-book entitled "Machinery's Handbook Pocket Companion", published by Industrial Press, which will be given to the participants to help them appreciate the principles presented in the course.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Select, operate, maintain, inspect and troubleshoot the major types of rotating equipment such as pumps, compressors, motors, turbines, etc
- Discuss electric motors, gears, transmission equipment, steam turbines and expanders
- Select and use centrifugal pumps, positive displacement and vacuum pumps, turbocompressors, fans, blowers and displacement compressors
- Implement the shortcut calculation methods for fluid machinery
- Discuss machinery reliability and availability calculations

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course covers systematic techniques and methodologies on the selection, operation, maintenance, inspection and troubleshooting of rotating equipment for mechanical engineers, rotating equipment engineers, supervisors and other technical staff. Further, the course is suitable to all other engineering disciplines who are dealing with rotating equipment such as process engineers, chemical engineers, electrical engineers, plant engineers, project engineers and instrumentation engineers.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Virtual Training (If Applicable)

If this course is delivered online as a Virtual Training, the following limitations will be applicable:-

Certificates	Only soft copy certificates will be issued to participants through Haward's Portal. This includes Wallet Card Certificates if applicable
Training Materials	Only soft copy Training Materials (PDF format) will be issued to participant through the Virtual Training Platform
Training Methodology	80% of the program will be theory and 20% will be practical sessions, exercises, case studies, simulators or videos
Training Program	The training will be for 4 hours per day starting at 0930 and ending at 1330
H-STK Smart Training Kit	Not Applicable
Hands-on Practical Workshops	Not Applicable
Site Visit	Not Applicable
Simulators	Only software simulators will be used in the virtual courses. Hardware simulators are not applicable and will not be used in Virtual Training

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

F2F Classroom: US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward

Smart Training Kit), buffet lunch, coffee/tea on arrival, morning &

afternoon of each day.

Online Virtual: US\$ 2,750 per Delegate + VAT.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations:

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 30 years of extensive industrial experience. His wide expertise includes Boiler Inspection & Maintenance, Boiler Systems, Boiler instrumentation & Controls, Boiler Start-up & Shutdown, Boiler Operation & Steam System Management, Piping & Pipeline, Maintenance, Repair, Shutdown, Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control,

Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master's and Bachelor's degree in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) a Certified Instructor/Trainer and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 08th of February 2026

<i>Day 1:</i>	Sunday, 08" of February 2026
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Electric Motors
0030 0030	Design • Controls • Wiring Systems • Standard Motors • Special Designs •
0830 - 0930	Major Components • The Motor as Part of a System • Adjustable Frequency
	Motors
0930 - 0945	Break
0045 1100	Gears and Transmission Equipment
0945 – 1100	Types of Gears • Applications Constraints • Maintenance
1100 - 1230	Gas Turbines and Engines
	Simple Cycle • Heat Recovery Cycles • Type Selection • Maintenance • Two
	and Four Cycle Gas Engines • Gas Engine Compressor Auxiliary Systems
1230 – 1245	Break
1245 - 1420	Steam Turbines and Expanders
	Impulse Turbines • Reaction Turbines • Application Ranges • Turbine
	Configurations • Applications Constraints • Maintenance
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

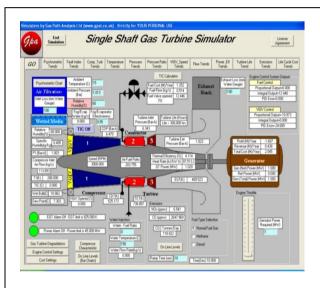
Day 2: Monday, 09th of February 2026

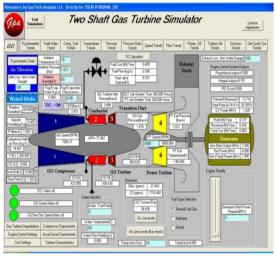
Duy L.	monday, 05 of rebrainy 2020
0730 - 0930	Steam Turbines and Expanders (cont'd)
	Turbo-expander Construction Features • Applications • Operation
0930 - 0945	Break
0945 – 1100	Centrifugal Pumps
	Configurations and Styles • Application Ranges and Constraints • Construction
	Features and Options • Pump Auxiliaries • Wear Components
1100 – 1230	Centrifugal Pumps (cont'd)
	Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps •
	Servicing and Condition Monitoring
1230 - 1245	Break
	Positive Displacement and Vacuum Pumps
1245 – 1420	Reciprocating Steam and Power Pumps • Diaphragm Pumps • Plunger Pumps
	• Gear Screw and Progressive Cavity Pumps • Peristaltic Pumps
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 10 th of February 2026
_	Positive Displacement and Vacuum Pumps (cont'd)
0730 - 0930	Conventional and Special Vacuum Pumps • Liquid Jet and Liquid Ring Pumps • Combination and Staged Vacuum Pumps
0930 - 0945	Break
	Turbo-compressors
0945 – 1100	Types, Styles and Configurations of Centrifugal and Axial Compressors • Construction Features • Mode of Operation • Compressor Auxiliaries and Support Systems
1100 - 1230	Turbo-compressors (cont'd)
	Condition Monitoring • Application Criteria • Performance Capabilities and Limitations • Maintenance
1230 – 1245	Break
1245 – 1420	Fans and Blowers Types and Configurations • Performance and System Effects
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 11th of February 2026
0730 - 0930	Fans and Blowers (cont'd)
	Performance Correction • Capacity Control Options
0930 - 0945	Break
0045 1100	Displacement Compressors
0945 – 1100	Classification • Reciprocating Compressors vs. Rotary Screw Compressors
1100 - 1230	Displacement Compressors (cont'd)
	Application Ranges and Limitations • Compression Processes
1230 – 1245	Break
1245 – 1420	Displacement Compressors (cont'd)
	Construction Features and Components • Capacity Control
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

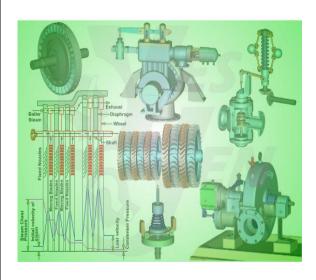
Day 5:	Thursday, 12 th of February 2026
0730 - 0930	Theory & Shortcut Calculation Methods for Fluid Machinery
	Pumps ● Turbines
0930 - 0945	Break
0945 – 1100	Theory & Shortcut Calculation Methods for Fluid Machinery (cont'd)
	Compressors
1100 – 1230	Machinery Reliability and Availability Calculations
	Reliability Indices
1230 – 1245	Break





1245 – 1345	Machinery Reliability and Availability Calculations (cont'd)
	Machinery Systems Reliability Calculations
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

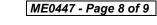
Simulator (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Single Shaft Gas Turbine Simulator" and "Two Shaft Gas Turbine Simulator", "Steam Turbine & Governing System", "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor Simulator" and "CBT on Compressors" Simulators.



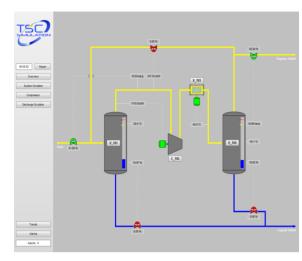
Single Shaft Gas Turbine Simulator

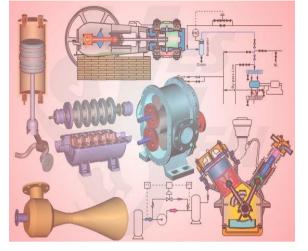
Two Shaft Gas Turbine Simulator

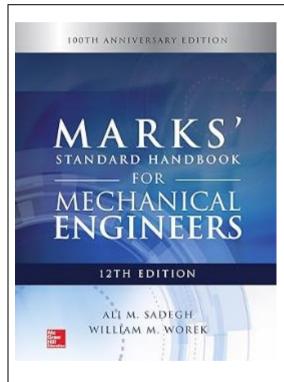


Steam Turbine & Governing System

Centrifugal Pumps and Troubleshooting Guide 3.0







SIM 3300 Centrifugal Compressor Simulator

CBT on Compressors

Book(s)

As part of the course kit, the following e-book will be given to all participants:

Title: Marks' Standard Handbook For

Mechanical Enginerrs

ISBN : 1259588505

Author: Ali Sadegh, William Worek

Publisher:

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

