# COURSE OVERVIEW Al0145 Certified Artificial Intelligence Practitioner (CAIP)

(CertNexus-CAIP Exam Preparation Training)

## **Course Title**

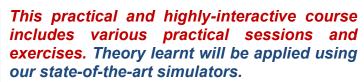
Certified Artificial Intelligence Practitioner (CAIP) (CertNexus-CAIP Exam Preparation Training)

#### **Course Date/Venue**

December 22-26, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

## **Course Reference**

AI0145


#### **Course Duration/Credits**

Five days/3.0 CEUs/30 PDHs

## **Course Description**







This course is designed to provide participants with a detailed and up-to-date overview of Certified Artificial Intelligence

Practitioner (CAIP). It covers the AI and ML solutions for business problems, following a machine learning workflow and formulating a machine learning problem; selecting appropriate tools and platforms, data collection and initial data exploration; the data transformation and engineering features and feature engineering for machine learning; and the exploratory data analysis and visualization, training a machine learning model (fundamentals) and evaluating and tuning machine learning models.

Further, the course will also discuss the linear regression, forecasting models and classification models using logistic regression and k-nearest neighbour; the clustering models, decision trees and random forests, support-vector machines (SVMs) and artificial neural networks (ANNs); the deep learning model tuning and advanced applications; and the ethics, privacy and responsible AI in model building.















During this interactive course, participants will learn the machine learning models, automating the ML process (MLOps) and maintaining models in production and securing ML pipelines and mitigating risks; integrating models into business processes and finalising model handoff and lifecycle management; the future of AI and emerging trends and measuring value; and the key performance indicators (KPIs) for AI initiatives, change management and scaling AI solutions across enterprise.

#### **Course Objectives**

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the next CAIP Exam and have enough knowledge and skills to pass such exam in order to get the Certified Artificial Intelligence Practitioner (CAIP) from CertNexus
- Identify AI and ML solutions for business problems, follow a machine learning workflow and formulate a machine learning problem
- Select appropriate tools and platforms and apply data collection and initial data exploration
- Discuss data transformation and engineering features and feature engineering for machine learning
- Carryout exploratory data analysis and visualization, training a machine learning model (fundamentals) and evaluating and tuning machine learning models
- Build linear regression and forecasting models and classification models using logistic regression and k-nearest neighbour
- Build clustering models, decision trees and random forests, support-vector machines (SVMs) and artificial neural networks (ANNs)
- Employ deep learning model tuning and advanced applications as well as ethics, privacy and responsible AI in model building
- Deploy machine learning models, automate the ML process (MLOps), maintain models in production and secure ML pipelines and mitigating risks
- Integrate models into business processes, finalize model handoff and lifecycle management and discuss the future of AI and emerging trends
- Apply measuring value, key performance indicators (KPIs) for AI initiatives and change management and scaling AI solutions across enterprise

#### Exclusive Smart Training Kit - H-STK®



Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**<sup>®</sup>). The **H-STK**<sup>®</sup> consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

#### **Who Should Attend**

This course provides an overview of all significant aspects and considerations of artificial intelligence for business solutions heads, technology solutions managers, IT quality and control managers, IT professionals and software developers, data analysts and data scientists, business leaders and project managers, risk, compliance and other technical staff.









## **CertNexus-CAIP Certificate(s)**

(1) CertNexus-CAIP certificates will be issued to participants who successfully passed the CertNexus-CAIP exam.



(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course









## **Certificate Accreditations**

Haward's certificates are accredited by the following international accreditation organizations:



## **British Accreditation Council (BAC)**

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

#### **Training Fee**

**US\$ 5,500** per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

#### Exam Fee

US\$ 490 per Delegate + VAT.











## **Course Instructor(s)**

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:



Dr. Hazim Ibrahim, PhD, MSc, MBA, BSc, CAIP, is a Senior IT Specialist with over 30 years of extensive experience. His expertise widely covers Artificial Intelligence, Digitalization, Digital Transformation Strategy & Implementation, VMware Virtualization (ESXi, vCenter, vGPU, VCF), IT Maintenance, Say2000i, IP Phone, National Address & ID Automation, Electricity Distribution Network, Customs Network & Maintenance, LAN & WAN Network, UYAP Network, Network Routing Protocols, Multicast Protocols, Network

Management Protocols, Microsoft Enterprise Systems, Microsoft Servers, Microsoft Hyper-V, Microsoft Exchange, Microsoft 365 Cloud Services (Exchange Online, Teams, OneDrive), Microsoft Azure & Hybrid Active Directory Environments, VMware Events, VMware ESXi/vCenter, Enterprise Infrastructure & Virtualization, Data Center Infrastructure, Data Center Architecture & Digital Transformation Projects, Mission-critical IT Systems, Data Center Design & Management, File Server & Corporate Document Management, ERP (SAP) & Oracle Database Systems, Oracle OVM, Oracle DB, Active Directory, SAP ERP, VMware vSphere 6.0 Installation & Configuration, Microsoft Windows Server 2012 R2, Microsoft Exchange Server 2012, Red Hat Linux Administration, AutoCAD, GIS ArcView, WiMAX Broadband Wireless System, TT Intranet & ADSL Network, TT Web & Voicemail, Off-site ATM Network, Mobile & Wireless Networks and Digital Signal Processing.

During his career life, Dr. Hazim is worked in significant positions like the CEO, Chairman of the Board, Managing Director, Non-executive Chairman, Director of Research, Professor & Dean, Chief Scientist, Assistant Scientist, Associate Professor, AI Technology Innovations Advisor, Senior Advisor, Teaching Assistant, IT Consultant and Senior Instructor/Trainer from various companies such as Generabia (FZC), RayaCX, SUMMIT Holding, Adjunct Professor American University, Technology Innovation and Entrepreneurship Center (tiec), Microsoft Corporation, Information Technology Industry Development Agency (ITIDA), ICT Minister for the Technology Development Sector, Faculty of Computers and Information, UAE University, IBM research Center (Arabic NLP) and Department of Systems & Biomedical Engineering.

Dr. Hazim has a PhD in Applied Pattern Recognition and Artificial Intelligence, a Master's of Business Administration in Finance, a Master's degree in Applied Mathematics and a Bachelor's degree in Systems Engineering. Further, he is a Certified Instructor/Trainer, a Certified Artificial Intelligence Practitioner (CAIP) and a Verified Data Science Professional (DAT102x). He has further pPresented and published various awards and journals and delivered numerous training courses and workshops internationally.











## Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

#### Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

#### **Course Program**

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Monday, 22th December 2025 **Dav 1:** 

| Day 1.      | Monday, 22 December 2020                                                    |
|-------------|-----------------------------------------------------------------------------|
| 0730 - 0800 | Registration & Coffee                                                       |
| 0800 - 0815 | Welcome & Introduction                                                      |
| 0815 - 0830 | PRE-TEST                                                                    |
| 0830 - 0930 | Identifying AI & ML Solutions for Business Problems                         |
|             | The Hierarchy of Data - Making Raw Data Useful • Big Data Characteristics   |
| 0030 0330   | and Implications • Data Mining and Extraction of Insights • Selecting       |
|             | Appropriate Business Applications for AI/ML                                 |
| 0930 - 0945 | Break                                                                       |
|             | Following a Machine Learning Workflow                                       |
| 0945 - 1030 | The Machine-Learning Model and Overall Workflow • Data-Science Skillsets    |
| 0945 - 1050 | versus Traditional IT Skillsets • Concept Drift and Transfer Learning       |
|             | Considerations • Planning and Implementing the ML Workflow                  |
|             | Formulating a Machine Learning Problem                                      |
|             | Defining the Business Problem in ML Terms • Difference Between Traditional  |
| 1030 - 1130 | Programming and ML • Supervised versus Unsupervised Learning - What         |
|             | Fits the Business Case • Randomness, Uncertainty and Outcomes in ML         |
|             | Models                                                                      |
|             | Selecting Appropriate Tools & Platforms                                     |
| 1130 – 1215 | Open-Source versus Proprietary AI/ML Tools • Hardware Requirements -        |
|             | CPU versus GPU, Cloud Platforms • Setting Up Tool-Chains (e.g., Anaconda,   |
|             | Jupyter) • Guidelines for Selecting and Configuring an ML Tool-Set          |
| 1215 – 1230 | Break                                                                       |
| 1230 - 1330 | Data Collection & Initial Data Exploration                                  |
|             | Identifying and Sourcing ML Datasets (Structured, Unstructured) • Data      |
|             | Quality Issues: Missing Values, Duplicates, Noise • Understanding Data      |
|             | Structure (Categorical, Numerical, Text, Images) • Guidelines for Selecting |
|             | Datasets Aligned to Business Outcomes                                       |











| 1330 – 1420 | Data Transformation & Engineering Features  Data Transformation Techniques (Normalization, Standardization, Log, Etc.) •  Encoding Categorical Data and Representing Numerical Data • Working with  Different Data Formats: Audio, Text, Video, Image • Ethics, Privacy and |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1420 – 1430 | Governance in Data Collection and Feature Engineering  Recap  Using this Course Overview, the Instructor(s) will Brief Participants about the                                                                                                                               |
|             | Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow                                                                                                                                                                                     |
| 1430        | Lunch & End of Day One                                                                                                                                                                                                                                                      |

Day 2: Tuesday, 23<sup>th</sup> December 2025

| Day 2:      | Tuesday, 23 <sup>th</sup> December 2025                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------|
| 0730 - 0830 | Feature Engineering for Machine Learning Recognizing the Impact of Data Quality and Size on Algorithm Performance • |
|             | Feature Construction: Creating New Features, Dimensionality Reduction •                                             |
|             | Handling Missing Values, Outliers, Skewness and Kurtosis • Feature Selection                                        |
|             | Techniques and Business-Risk / Ethics Considerations                                                                |
|             | Exploratory Data Analysis & Visualization                                                                           |
|             | Descriptive Statistics: Central Tendency, Variability, Distributions •                                              |
| 0.220 0.220 | Correlation Analysis and Interpreting Relationships Between Features •                                              |
| 0830 - 0930 | Visualisation Tools: Histograms, Boxplots, Scatterplots, Heat Maps,                                                 |
|             | Geographic Maps • Best Practices for Communicating Insights from EDA to                                             |
|             | Stakeholders                                                                                                        |
| 0930 - 0945 | Break                                                                                                               |
|             | Training a Machine Learning Model (Fundamentals)                                                                    |
|             | Setting Up Experiments: Hypothesis, Train/Validate/Test Splits, Cross-                                              |
| 0045 1100   | Validation • Algorithm Selection: Supervised versus Unsupervised; Regression                                        |
| 0945 – 1100 | versus Classification versus Clustering • Model Generalization, Over-Fitting                                        |
|             | versus Under-Fitting, Bias-Variance Tradeoff • Iterative Model Tuning:                                              |
|             | Hyperparameters, Regularization, Feature Scaling                                                                    |
|             | Evaluating & Tuning Machine Learning Models                                                                         |
|             | Model Performance Metrics (For Regression: MSE, MAE, R <sup>2</sup> ; For                                           |
| 1100 – 1215 | Classification: Accuracy, Precision, Recall, F1, AUC) • Validation Techniques:                                      |
|             | K-Fold, Leave-P-Out, Hold-Out Sets • Hyperparameter Optimisation: Grid                                              |
|             | Search, Randomized Search, Bayesian Methods • Business Risks and Ethical                                            |
|             | Concerns in Training and Tuning ML Models                                                                           |
| 1215 – 1230 | Break                                                                                                               |
| 1230 – 1330 | Building Linear Regression & Forecasting Models                                                                     |
|             | Linear Regression Using Linear Algebra: Cost Functions, Normal Equation •                                           |
|             | Regularised Regression (Ridge, Lasso, ElasticNet) • Iterative Approaches:                                           |
|             | Gradient Descent, Learning Rate, Convergence Issues • Time-Series                                                   |
|             | Forecasting: Univariate Models, Multivariate Models                                                                 |









| 1330 - 1420 | Building Classification Models Using Logistic Regression & k-Nearest            |
|-------------|---------------------------------------------------------------------------------|
|             | Neighbour                                                                       |
|             | Training Binary Classification with Logistic Regression: Decision Boundary,     |
|             | Cost Functions • Classification Using k-Nearest Neighbour: Parameter k,         |
|             | Distance Metrics, Pros/Cons • Multi-Class Classification Approaches (One-Vs-    |
|             | Rest, One-Vs-One) • Evaluating Classification Models: Confusion Matrix,         |
|             | ROC/PRC, Thresholds                                                             |
| 1420 – 1430 | Recap                                                                           |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the |
|             | Topics that were Discussed Today and Advise Them of the Topics to be            |
|             | Discussed Tomorrow                                                              |
| 1430        | Lunch & End of Day Two                                                          |

Day 3 Wednesday 24th December 2025

| Day 3:      | Wednesday, 24 <sup>th</sup> December 2025                                     |
|-------------|-------------------------------------------------------------------------------|
|             | Building Clustering Models                                                    |
| 0730 - 0830 | k-Means Clustering: Algorithm, choosing k, Limitations • Hierarchical         |
|             | Clustering: Dendrograms, Linkage Methods, Stopping Criteria • Evaluating      |
|             | Clustering: Silhouette Score, Davies-Bouldin Index • Use-Cases in Business:   |
|             | Customer Segmentation, Anomaly Detection                                      |
| 0830 - 0930 | Building Decision Trees & Random Forests                                      |
|             | Decision Tree Models: Splitting Criteria (Gini, Entropy), Tree Depth, Pruning |
|             | • Random Forests: Ensemble Learning, Bagging, Feature Importance • Over-      |
|             | Fitting Control in Tree-Based Models, Interpretability Issues • Business      |
|             | Application Examples and Deployment Considerations                            |
| 0930 - 0945 | Break                                                                         |
|             | Building Support-Vector Machines (SVMs)                                       |
| 0945 - 1100 | SVM for Classification: Kernel Trick (Linear, Polynomial, RBF), Margin        |
|             | Maximization • SVM for Regression: Support Vector Regression Concepts •       |
|             | Parameter Tuning: C, Gamma, Kernel Selection • Advantages, Limitations and    |
|             | When SVM Is Appropriate in Business Contexts                                  |
|             | Building Artificial Neural Networks (ANNs) - Introduction                     |
|             | Multi-Layer Perceptrons (MLP): Architecture, Activation Functions,            |
| 1100 – 1215 | Backpropagation • Convolutional Neural Networks (CNN): For Image/Vision       |
| 1100 - 1213 | Tasks, Layers, Filters • Recurrent Neural Networks (RNN) and LSTM: For        |
|             | Sequential/Time-Series/Text Data • Training Deep Networks: Epochs, Batch      |
|             | Size, Regularization (Dropout, Early Stopping)                                |
| 1215 – 1230 | Break                                                                         |
| 1230 - 1330 | Deep Learning Model Tuning & Advanced Applications                            |
|             | Transfer Learning, Fine-Tuning Pre-Trained Models • Hyperparameter            |
|             | Tuning for Deep Nets: Learning Rate Schedulers, Optimizers (Adam, SGD) •      |
|             | Handling Large Datasets and GPU/TPU Acceleration • Business Use-Cases:        |
|             | Computer Vision, NLP, Autonomous Systems                                      |









| 1330 – 1420 | Ethics, Privacy & Responsible AI in Model Building Ethical Concerns: Bias, Fairness, Transparency, Accountability • Data Privacy Regulations (e.g., GDPR) and Governance in ML Models • Risk Assessment Throughout Model Lifecycle • Communicating Results and Implications to Stakeholders |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1420 – 1430 | Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow                                                                                                               |
| 1430        | Lunch & End of Day Three                                                                                                                                                                                                                                                                    |

Day 4: Thursday, 25th December 2025

| Day 4:      | Thursday, 25 <sup>th</sup> December 2025                                        |
|-------------|---------------------------------------------------------------------------------|
|             | Deploying Machine Learning Models                                               |
|             | Model Deployment Strategies: Batch versus Online versus Real-Time • Model       |
| 0730 - 0830 | Serving: REST APIs, Micro-Services, Cloud Deployment (AWS, Azure, GCP)          |
|             | • Containerisation (Docker/Kubernetes) and Scaling • Security Concerns in       |
|             | Deployment: Access Control, Data in Transit, Data at Rest                       |
|             | Automating the ML Process (MLOps)                                               |
|             | CI/CD for ML: Pipelines for Data Ingestion, Model Retraining, Deployment •      |
| 0830 - 0930 | Monitoring Pipelines, Logging, Alerting, Version Control for Models/Data •      |
|             | A/B Testing, Shadow Deployment, Blue-Green Deployment for Models •              |
|             | Ensuring Reproducibility and Traceability of ML Workflows                       |
| 0930 - 0945 | Break                                                                           |
|             | Maintaining Models in Production                                                |
|             | Model Degradation, Data Drift, Concept Drift, Retraining Triggers •             |
| 0045 1100   | Performance Monitoring: Key-Performance Indicators for Models (Latency,         |
| 0945 – 1100 | Accuracy, Resource Usage) • Feedback Loops, User Interaction, Logging           |
|             | Predictions and Outcomes • Governance and Auditing of Operationalized ML        |
|             | Systems                                                                         |
|             | Securing ML Pipelines & Mitigating Risks                                        |
|             | Securing Data Pipelines: Ingestion, Transformation, Storage • Model Security:   |
| 1100 – 1215 | Adversarial Attacks, Data Poisoning, Model Inversion • Business Continuity      |
|             | and Disaster Recovery for ML Systems • Ethical Oversight and                    |
|             | Documentation of Deployed Models                                                |
| 1215 – 1230 | Break                                                                           |
|             | Integrating Models into Business Processes                                      |
|             | Embedding Models into Decision-Making Processes, User Workflows •               |
| 1230 – 1330 | Stakeholder Communication: Translating Model Output into Actionable             |
|             | Business Insights • Change Management, User Adoption, Training Operations       |
|             | Teams • KPI Tracking and Measurement of Business Impact from AI Solutions       |
|             | Finalising Model Handoff & Lifecycle Management                                 |
|             | Handoff Documentation: Model Specifications, Performance Logs, Governance       |
| 1330 – 1420 | Policies • Versioning: Model, Data, Environment, Code • Lifecycle               |
|             | Management: Retirement, Archiving, Reuse • Reviewing Business Impact,           |
|             | Lessons Learned, Continuous Improvement                                         |
| 1420 - 1430 | Recap                                                                           |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the |
|             | Topics that were Discussed Today and Advise Them of the Topics to be            |
|             | Discussed Tomorrow                                                              |
| 1430        | Lunch & End of Day Four                                                         |













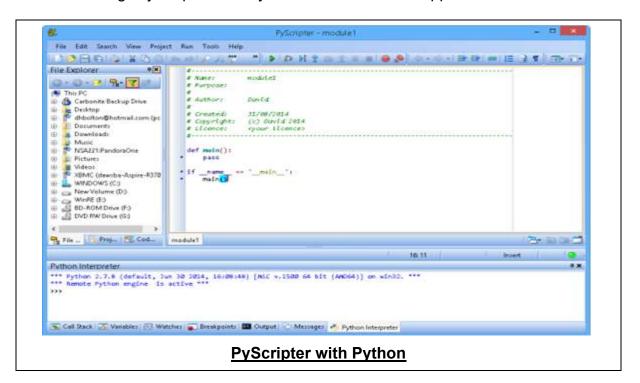
| Capstone Project Introduction  Define a Business Problem for Capstone (Industry-Specific Scenar |                               |
|-------------------------------------------------------------------------------------------------|-------------------------------|
| Define a Pricinage Duchlam for Canatana (Industry Canailia Canaan                               |                               |
|                                                                                                 |                               |
| 0730 - 0830 ML Workflow: From Problem Formulation Through Deployment                            | ent • Select                  |
| Dataset, Identify Features, Design Modelling Approach • Plan                                    | Evaluation,                   |
| Deployment and Business Impact Measurement                                                      |                               |
| Capstone Execution (Hands-On)                                                                   |                               |
| Data Preparation: Cleaning, Transformation, Feature Engineeri                                   | ing • Model                   |
| 0830 - 0930   Training: Select Algorithm(s), Tune Hyperparameters • Model                       | Evaluation:                   |
| Choose Metrics, Perform Validation • Deployment Plan: How the                                   | e Model Will                  |
| Be Operationalised in the Business Context                                                      |                               |
| 0930 – 0945   Break                                                                             |                               |
| Review of Key Concepts & Exam Preparation                                                       |                               |
| Recap Major Domains: Understanding AI/ML Problems, Feature                                      | Engineering,                  |
| 0945 - 1100 Training/Tuning, Operationalisation (Per Exam Blueprint) Cer                        |                               |
| Sample Exam Questions and Discussion • Review Vocabulary                                        | y, Formulas,                  |
| Algorithm Properties, Metrics • Exam-Taking Strategies: Time N                                  | Management,                   |
| Reading Questions, Eliminating Distractors                                                      |                               |
| Future of AI & Emerging Trends                                                                  |                               |
| Advances in Deep Learning, Reinforcement Learning, Genera                                       |                               |
| 1100 – 1215 (GANs, Transformers) • Edge AI, Federated Learning, AI in IoT/                      |                               |
| • Ethical AI, AI Governance Frameworks, Regulation Trends                                       | <ul> <li>Preparing</li> </ul> |
| Organisations for AI Maturity: Culture, Process, Skills                                         |                               |
| 1215 – 1230   Break                                                                             |                               |
| Business Impact & ROI of AI Solutions                                                           |                               |
| Measuring Value: Cost Reduction, Revenue Uplift, Time-to-In                                     | 0                             |
| 1230 – 1345   Performance Indicators (KPIs) for AI Initiatives • Case Studies: S                |                               |
| Deployments Across Industries • Change Management and                                           | Scaling AI                    |
| Solutions Across Enterprise                                                                     |                               |
| Course Conclusion                                                                               |                               |
| 1345 – 1400 Using this Course Overview, the Instructor(s) will Brief Participal                 | nts about the                 |
| Course Topics that were Covered During the Course                                               |                               |
| 1400 – 1415   <b>POST-TEST</b>                                                                  |                               |
| 1415 – 1430 Presentation of Course Certificates                                                 |                               |
| 1430 Lunch & End of Course                                                                      |                               |

#### **MOCK Exam**

Upon the completion of the course, participants have to sit for a MOCK Examination similar to the exam of the Certification Body through Haward's Portal. Each participant will be given a username and password to log in Haward's Portal for the MOCK Exam during the 60 days following the course completion. Each participant has only one trial for the MOCK exam within this 60-day examination window. Hence, you have to prepare yourself very well before starting your MOCK exam as this exam is a simulation to the one of the Certification Body.












## **Simulator (Hands-on Practical Sessions)**

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using "PyScripter with Python" and "MS-Excel" application.



#### **Course Coordinator**

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org



