

COURSE OVERVIEW HE0110 HAZMAT & HAZCOM

Hazardous Materials & Chemicals

Handling, Storage, SDS, Disposal, Monitoring, Response & Spill Clean Up

Course Title

HAZMAT & HAZCOM: Hazardous Materials & Chemicals Handling, Storage, SDS, Disposal, Monitoring, Response & Spill Clean Up

Course Reference HE0110

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

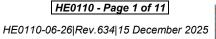
Course Date/Venue

Session(s)	Date	Venue
1	June 28-July 02, 2026	Meeting Plus 6, Downtown Rotana, Manama, Kingdom of Bahrain
2	July 12-16, 2026	Meeting Plus 9, City Centre Rotana, Doha, Qatar
3	October 25-29, 2026	Pierre Lotti Meeting Room, Movenpick Hotel Istanbul Golden Horn, Istanbul, Turkey
4	December 13-17, 2026	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Description

Hazardous chemicals are ubiquitous as air, carbohydrates, enzymes, lipids, minerals, proteins, vitamins, water and wood. Naturally occurring hazardous chemicals are supplemented by man-made substances. There are about 70,000 chemicals in use with another 500-1000 added each year. Their properties have been harnessed to enhance the quality of life, thus chemicals are found in virtually all workplaces. Besides the benefits, chemicals also pose dangers to man and the environment.

Society must strike a balance between the benefits and risks of hazardous chemicals. In the workplace it is a management responsibility to ensure practices control the dangers, and it is for employees to collaborate in implementing the agreed Management must also prevent uncontrolled procedures. environmental releases and ensure all wastes are disposed of safely and with proper regard for their environmental impact. The aims of this course are to raise awareness and to help participants identify, assess and control the hazards of chemicals to permit optimum exploitation whilst minimizing the dangers.



The hazards of chemicals stem from their inherent flammable, explosive, toxic, carcinogenic, corrosive, radioactive or chemical-reactive properties. The effect of exposure on personnel may be acute (fatal) or prolonged that result in an occupational disease or systemic poisoning. However, whether a hazardous condition develops in any particular situation also depends upon the physical properties of the chemical (or mixture of chemicals), the scale involved, the circumstances of handling or use, e.g. provision of control and safety devices, local exhaust ventilation, general ventilation, personal protection, atmospheric monitoring and systems of work generally.

This course is designed to cover occupational, industrial and environmental hazards associated with hazardous materials and chemicals. It includes chemical spills, fires and explosions since they inevitably involve chemical compounds. Further, the course will present information on the nature of hazardous materials and chemicals and help participants reduce or eliminate potential exposure to hazardous materials and chemicals in their work environment.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques in hazardous material handling (HAZMAT) and hazardous material communication (HAZCOM) including handling, storage, disposal, monitoring, response, SDS and spill clean up of hazardous materials and chemicals
- Discuss the physicochemistry of vapour pressure, gas-liquid solubility, density differences of liquids, surface area effects in mass transfer or heterogeneous reactions and chemical reaction kinetics
- Recognize the hazards of toxic chemicals including its types, risk control and specific precautions
- Employ control measures for flammable chemicals and prevent hazards arising in reactive chemicals processing
- Enumerate the various cryogens, compresses gases and radioactive chemicals including its characteristics
- Carryout proper monitoring techniques for environmental pollution, gases, vapours, particulates, water quality, sampling strategies and incident investigation
- Discuss safety by design including design procedures, layout, storage, piping arrangements, fire protection, installation and operation of hazardous chemicals
- Apply effective operating procedures for the commissioning, operation, maintenance, spillage, personal protection and monitoring standards of hazardous chemicals
- Identify the classification, packaging, labelling and specific information for marketing hazardous chemicals
- Employ the safe transport of chemicals by road, rail, air and sea and determine the modes of transport for liquids, gases and solids
- Acquire knowledge on the monitoring and protection of chemicals and the environment including the legislative control governing these chemicals, proper waste management and environmental impact assessment

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of hazardous materials and chemicals handling, storage, SDS, disposal, monitoring, response and spill clean-up for those who are dealing with hazardous materials and chemicals in the workplace such as managers, engineers and other technical staff. This course is also suitable for health, safety and environmental (HSE) personnel.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

Manama	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

(1) Internationally recognized Competency Certificates will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

(2)

Haward Technology Middle East

Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a Senior Process & Safety Engineer with over 25 years of extensive experience within the Oil & Gas, Refinery, Petrochemical & Power industries. His expertise widely covers in the areas of PHA, HAZOP, HAZCOM, HAZMAT, HAZID, Behavior Based Safety, Hazardous Materials & Chemicals Handling, Pollution Control, Environment, Health & Safety Management, Process Risk Analysis, Hazard & Risk Assessment, Emergency Response Procedures Behavioural Based Safety (BBS), Confined Space Entry, Fall Protection, Emergency

Response, H₂S, Safety Management System (ISO 45001), Accident/Incident Investigation System and Report PSM, Risk Assessment, SCE FMEA Failure Investigations, Site Management Safety Training (SMSTS), Occupational Health & Safety and Industrial Hygiene, Crisis Management & Damage Control in Oil & Gas Industry, Enhancing HSSE Safety Performance & Effectiveness, Overhead & Gantry Crane Safety, HSSE Principles & Practices Advanced, HAZOP Study, Sampling & Analysis, Training Analysis, Job Analysis Techniques, Storage & Handling of Toxic Chemicals & Hazardous Materials, Hazardous Material Classification & Storage/Disposal, Dangerous Goods, Environmental Management System (EMS). Further. he is also well-versed in Ammonia Manufacturing & Process Troubleshooting, Ammonia Storage & Loading Systems, Ammonia Plant Operation, Troubleshooting & Optimization, Ammonia Recovery, Ammonia Plant Safety, Hazard of Ammonia Handling, Storage & Shipping, Operational Excellence in Ammonia Plants, Fertilizer Storage Management (Ammonia & Urea), Fertilizer Manufacturing Process Technology, Sulphur Recovery, Phenol Recovery & Extraction, Wax Sweating & Blending, Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Separators in Oil & Gas Industry, Gas Testing & Energy Isolations, Gas Liquor Separation, Industrial Liquid Mixing, Wax Bleachers, Extractors, Fractionation, Operation & Control of Distillation, Process of Crude ATM & Vacuum Distillation Unit, Water Purification, Steam & Electricity. Flame Arrestors and Coal Processing. Environmental **Emission Control.**

During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician, Senior Lecturer and Senior Consultant/Trainer for various companies such as the Sasol Ltd., Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a **Bachelor's** degree in **Chemical Engineering** and a **Diploma** in **Mechanical Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (**ILM**) and has delivered various trainings, workshops, seminars, courses and conferences internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	General Principles of Chemistry
0830 - 0900	Atoms & Molecules • Periodic Table • Valency • Chemical Bonds •
	Oxidation/Reduction • Physical State • Acids • Bases • Halogens
0900 - 0915	Break
	General Principles of Chemistry (cont'd)
0915 - 1030	Metals • Oxygen & Sulphur • Nitrogen, Phosphorus, Arsenic & Antimony
0913 - 1030	• PH • Salts • Organic Chemistry • Combustion Chemistry • Chemical
	Reactivity
	Physicochemistry
	Vapour Pressure • Gas-Liquid Solubility • Liquid-To-Vapour Phase
1030 - 1200	Change • Solid-to-Liquid Phase Change • Density Differences of Gases &
	Vapours • Density Differences of Liquids • Immiscible Liquid-Liquid
	Systems • Vapour Flashing
1200 – 1215	Break
	Physicochemistry (cont'd)
	Effects of Particle or Droplet Size • Surface Area Effects in Mass Transfer or
1215 – 1420	Heterogeneous Reactions • Enthalpy Changes on Mixing of Liquids •
	Critical Temperatures of Gases • Chemical Reaction Kinetics • Corrosion •
	Force & Pressure • Expansion & Contraction of Solids
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 – 0900	Toxic Chemicals
	Hazard Recognition • Types of Toxic Chemicals • Hazard Assessment •
	Risk Assessment of Carcinogens • Risk Control • Control of Substances
	Hazardous to Health ● Specific Precautions ● SDS
0900 - 0915	Break
	Flammable Chemicals
0915 - 1030	Ignition & Propagation of a Fame Front • Control Measures • Fire
	Extinguishment • Fire Precautions • SDS
	Reactive Chemicals
	Water-Sensitive Chemicals • Toxic Hazards From Mixtures • Reactive
1030 - 1200	Hazards from Mixtures • Oxidizing Agents • Explosive Chemicals •
	General Principles for Storage • Hazards Arising in Chemicals Processing •
	SDS
1200 – 1215	Break
1215 – 1420	Cryogens
	Liquid Oxygen • Liquid Nitrogen and Argon • Liquid Carbon Dioxide •
	Liquefied Natural Gas • SDS
1420 – 1430	Recap
1430	Lunch & End of Day Two

Day 3

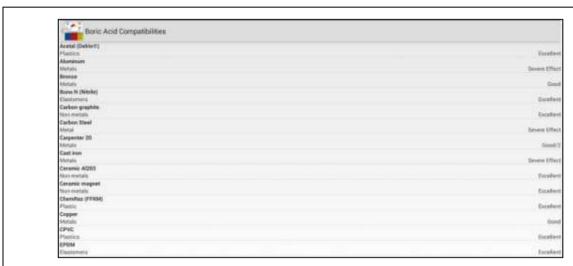
Day 0		
0730 - 0900	Compressed Gases	
	Acetylene • Air • Ammonia • Carbon Dioxide • Carbon Monoxide •	
	Chlorine • Hydrogen • Hydrogen Chloride • Hydrogen Sulphide •	
	Liquefied Petroleum Gases • Methane • Nitrogen • Nitrogen Oxides •	
	Oxygen • Ozone • Sulphur Dioxide	
0900 - 0915	Break	
	Monitoring Techniques	
0915 - 1030	Selected General Analytical Techniques for Monitoring Environmental	
0915 - 1050	Pollution ● Gases & Vapours ● Particulates ● Monitoring Water Quality	
	 Monitoring Land Pollution Monitoring Air Pollution 	
	Monitoring Techniques (cont'd)	
	Flammable Gases • Toxic Particulates • Official Methods • Sampling	
1030 - 1200	Strategies • Selected Strategies for Determining Employees' Exposure to	
	Airborne Chemicals • Pollution Monitoring Strategies in Incident	
	Investigation	
1200 – 1215	Break	
1015 1400	Radioactive Chemicals	
1215 – 1420	Hazards ● Types of Radiation ● Control Measures ● SDS	
1420 - 1430	Recap	
1430	Lunch & End of Day Three	

Day 4

Day 4	
	Safety by Design
0730 - 0900	Design Procedures • Layout • Storage • Equipment Design • Piping
	Arrangements • Fire Protection • Installation & Operation
0900 - 0915	Break
	Operating Procedures
0915 – 1030	Commissioning • Operation • Maintenance • Pressure Systems •
	Emergency Procedures • Spillage • SDS
	Operating Procedures (cont'd)
1030 - 1200	First Aid • Personal Protection • Medical Screening • Monitoring
	Standards • Training
1200 – 1215	Break
1215 – 1420	Marketing
	Classification ● Packaging ● Labelling ● Information ● SDS
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 - 0900	Transport of Chemicals Road Transport ● Rail Transport ● Air Transport ● Sea Transport ●	
	Modes of Transport for Liquids, Gases & Solids • Loading & Unloading •	
	Container Filling/Discharging ● SDS	
0900 - 0915	Break	
0915 – 1030	Chemicals & the Environment: Monitoring & Protection	
	Legislative Control • Waste Management • Environmental Impact	
	Assessment • Control of Atmospheric Emissions • SDS • Liquid Effluent	
	Treatment Operations • Control of Solid Waste • Monitoring & Auditing	
1030 - 1200	Chemical Spill Clean Up	

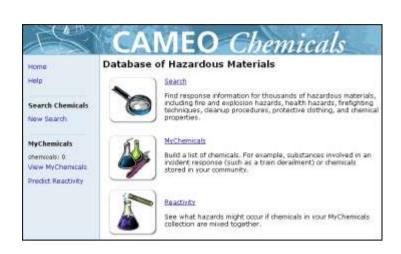


1200 - 1215	Break
1215 - 1300	Chemical Spill Clean Up (cont'd)
1300 - 1315	Course Conclusion
1315 - 1415	COMPETENCY EXAM
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators; "Chemical Compatibility 1.1 Simulator", "Chemical Safety Database Simulator", "CAMEO Chemicals Suite Simulator" or "ERG 2020 Simulator".

Chemical Compatibility 1.1 Simulator


Chemical Safety Database Simulator

CAMEO Chemicals Suite Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

