

COURSE OVERVIEW IE0068 Industrial Automation with MCC and VFD System

CEUS

(30 PDHs)

AWAR

Course Title

Industrial Automation with MCC and VFD System

Course Date/Venue

- Session 1: April 21-25, 2025/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
- Session 2: October 13-17, 2025/Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

IE0068

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Industrial Automation with MCC and VFD Systems. It covers the basics of electrical power systems, power factor, energy efficiency, electrical safety fundamentals and earthing and grounding principles; the control system basics, industrial motors and detailed MCC design and layout; the MCC installation guidelines and procedures, testing, commissioning, routine and preventive maintenance practices and common troubleshooting techniques; and the types of starters protection devices in MCCs MCCs. and in communication and smart MCCs.

Further, the course will also discuss the VFD principles of operation, VFD components and design, VFD configuration and programming, VFD protection mechanisms and applications of VFD system; the writing and communication setup, protocols for MCC-VFD communication and synchronization of multiple drives; the role of PLCs in MCC and VFD integration; configuring HMIs for MCC and VFD control; and the real-time monitoring, data logging and alarm and fault management.

IE0068 - Page 1 of 15

During this interactive course, participants will learn the energy-saving strategies with MCC and VFD, power quality issues and mitigation techniques; the electrical and mechanical safety measures, lockout/tagout procedures, risk assessment and emergency shutdown procedures; the advanced features of VFDs and process automation with MCC and VFD; the diagnostic tools for MCC and VFD, step-by-step troubleshooting methodology, and analyzing fault logs and system reports; modernizing existing MCC system and upgrading VFDs for higher performance; the energy efficiency retrofitting techniques and cost-benefit analysis of upgrades; and the industrial automation standards, environmental regulations, electrical codes and certifications and documentation and reporting requirements.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on industrial automation with motor control center (MCC) and variable frequency drive (VFD) systems
- Discuss industrial automation, motor control center and variable frequency drive system
- Explain the basics of electrical power systems, power factor, energy efficiency, electrical safety fundamentals, and earthing and grounding principles
- Recognize control system basics, industrial motors and detailed MCC design and layout
- Employ MCC installation guidelines and procedures, testing, commissioning, routine and preventive maintenance practices, and common troubleshooting techniques
- Identify the types of starters in MCCs, protection devices in MCCs, and communication and smart MCCs
- Determine VFD principles of operation, VFD components and design, VFD configuration and programming, VFD protection mechanisms and applications of VFD system
- Apply writing and communication setup, protocols for MCC-VFD communication and synchronization of multiple drives
- Define the role of PLCs in MCC and VFD integration, configure HMIs for MCC and VFD control and apply real-time monitoring, data logging, and alarm and fault management
- Employ energy-saving strategies with MCC and VFD, identify power quality issues and mitigation techniques and apply electrical and mechanical safety measures, lockout/tagout procedures, risk assessment and emergency shutdown procedures
- Discuss the advanced features of VFDs covering multi-motor control, regenerative braking, dynamic braking resistors and custom programming options
- Carryout process automation with MCC and VFD, integration with SCADA/DCS systems and predictive maintenance systems
- Use diagnostic tools for MCC and VFD, apply step-by-step troubleshooting methodology and analyze fault logs and system reports

IE0068 - Page 2 of 15

- Modernize existing MCC system, upgrade VFDs for higher performance and apply energy efficiency retrofitting techniques and cost-benefit analysis of upgrades
- Review industrial automation standards, environmental regulations, electrical codes and certifications, and documentation and reporting requirements

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of industrial automation with MCC and VFD systems for engineers, electrical engineers, automation engineers, mechanical engineers, technicians and operators, maintenance technicians, plant operators, project managers, supervisors and team leads, consultants and system integrators and other technical staff.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

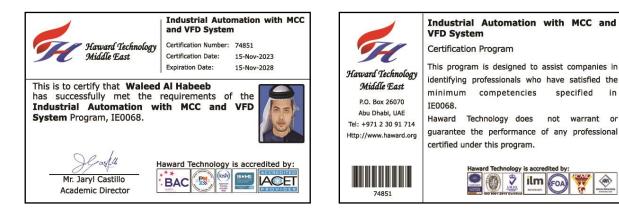
Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

IE0068 - Page 3 of 15

Course Certificate(s)


(1)Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Certificates are valid for 5 years.

Recertification is FOC for a Lifetime.

Sample of Certificates

The following are samples of the certificates that will be awarded to course participants:-

IE0068 - Page 4 of 15

IE0068-04-25|Rev.00|16 January 2025

specified

not warrant or

in

-

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

	Continuing Professional Dev	gy Middle East velopment (HTME-CPD)		
<u>c</u>	EU Official Trans	cript of Recor	<u>ds</u>	
TOR IssuanceDate:	15-Nov-23			
HTME No.	74851			
Participant Name:	Waleed Al Habeeb			
Program Ref.	Program Title	Program Date	No. of Contact Hours	CEU's
IE0068 Industr	rial Automation with MCC and VFD	November 11-15, 2023	30	3.0
Total No. of CEU's Earne	ed as of TOR Issuance Date		20	3.0
Total No. of CEU's Earne	ed as of TOR Issuance Date		TRUE COPY	3.0
Total No. of CEU's Eam	ed as of TOR Issuance Date		Harfill	3.0
Total No. of CEU's Earne	ed as of TOR Issuance Date	A	TRUE COPY Jaryl Castillo cademic Director	3.0
Haward Technology has bee (IACET), 2201 Cooperative Way with the ANSI/IACET 1-2018	ed as of TOR Issuance Date	the International Association for Cc g this approval, Haward Technology landard of good practice internationally	Jaryl Castillo cademic Director	Training complies thorized
Haward Technology has bee (IACET), 2201 Cooperative Way with the ANSI/IACET 1-2018 Provider membership status, Standard. Haward Technology's course Education Units (CEUs) in act IACET is an international auth	en approved as an Accredited Provider by , Suite 800, Herndon, VA 20171, USA. In obtainin Standard which is widely recognized as the s	the International Association for Cc g this approval, Haward Technology randrad of good practice internationality CET CEUs for programs that qualify pontinuing education requirements for remarkional Association for Continuing	Juryl Castillo cademic Director	Training complies ithorized T 1-2018 ontinuing IACET).
Haward Technology has bee (IACET), 2201 Cooperative Way with the ANSI/IACET 1-2018 Provider membership status, Standard. Haward Technology's course Education Units (CEUs) in act IACET is an international auth	en approved as an Accredited Provider by , Suite 600, Hendon, VA 20171, USA. In obtainin Standard which is widely recognized as the s Haward Technology is authorized to offer IA s meet the professional certification and co cordance with the rules & regulations of the In forty that evaluates programs according to stric	the International Association for Cc g this approval, Haward Technology randrad of good practice internationality CET CEUs for programs that qualify pontinuing education requirements for remarkional Association for Continuing	Juryl Castillo cademic Director	Training complies ithorized T 1-2018 ontinuing IACET).
Haward Technology has bee (IACET), 2201 Cooperative Way with the ANSI/IACET 1-2018 Provider membership status, Standard. Haward Technology's course Education Units (CEUs) in act IACET is an international auth	en approved as an Accredited Provider by , Suite 600, Hendon, VA 20171, USA. In obtainin Standard which is widely recognized as the s Haward Technology is authorized to offer IA s meet the professional certification and co cordance with the rules & regulations of the In forty that evaluates programs according to stric	the International Association for Cc g this approval, Haward Technology randrad of good practice internationality CET CEUs for programs that qualify pontinuing education requirements for remarkional Association for Continuing	Juryl Castillo cademic Director	Training complies ithorized T 1-2018 ontinuing IACET).

IE0068-04-25|Rev.00|16 January 2025

IE0068 - Page 5 of 15

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC

The International Accreditors for Continuing Education and Training IA@EI (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

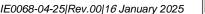
Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IE0068 - Page 6 of 15

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Process Control Instrumentation, Process Instrumentation & Control, Process Control, Instrumentation, Troubleshooting & Problem Solving, Instrumentation Engineering, Process Control (PCI) & Safeguarding, Instrument


Calibration & Maintenance, Instrumented Safety Systems, High Integrity Protection Systems (HIPS), Process Controller, Control Loop & Valve Tuning, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed **Control System** - Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD), Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement and Control, Mass Measuring System Batching (Philips), Arc Furnace Automation-Ferro Alloys, Walking Beam Furnace, Blast Furnace, Billet Casting Station, Cement Kiln Automation, Factory Automation and Quality Assurance Accreditation (ISO 9000 and Standard BS 5750). Further, he is also well-versed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the Projects Manager wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the **Contracts & Projects Manager**, **Managing Director**, **Technical Director**, **Divisional Manager**, **Plant Automation Engineer**, **Senior Consulting Engineer**, **Senior Systems Engineer**, **Consulting Engineer**, **Service Engineer** and **Section Leader** from several international companies such as **Philips**, **FEDMIS**, **AEG**, **DAVY International**, **BOSCH**, **Billiton** and **Endress/Hauser**.

Mr. Thoresson is a **Registered Professional Engineering Technologist** and has a **Bachelor's** degree in **Electrical & Electronics Engineering** and a **National Diploma** in **Radio Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops worldwide.

IE0068 - Page 7 of 15

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	<i>Introduction to Industrial Automation</i> Definition & Importance • Components of Automation Systems • Key Industrial Automation Applications • Trends & Future Prospects in Automation
0930 - 0945	Break
0945 - 1030	Overview of MCC (Motor Control Center) What is an MCC? • Types of MCCs (Conventional & Intelligent) • Basic Components of MCC (Switchgear, Breakers, Relays, etc.) • Standards & Classifications (IEC, NEMA)
1030 - 1130	Basics of VFD (Variable Frequency Drive) Systems What is a VFD? • Importance of VFDs in Automation • Basic Working Principles • Benefits of VFD Systems
1130 – 1215	<i>Electrical Fundamentals for MCC & VFD Systems</i> Basics of Electrical Power Systems (Single-Phase versus Three-Phase) • Power Factor & Energy Efficiency • Electrical Safety Fundamentals • Earthing & Grounding Principles
1215 - 1230	Break
1230 - 1330	Control Systems Basics Open-loop versus Closed-Loop Control • Overview of PLCs & HMIs in Automation • Sensors & Actuators in Control Systems • Communication Protocols in Automation (e.g., Modbus, Profibus)
1330 - 1420	Understanding Industrial Motors Types of Motors Used in Automation (AC, DC, Stepper, Servo) • Motor Control Principles • Motor Ratings & Specifications • Motor Starting Methods & Protection
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

	Detailed MCC Design & Layout
0730 - 0830	Components of MCC Design • Busbar Configuration & Types • Power
	Distribution Inside MCC • MCC Panel Arrangement & Labeling
	MCC Installation & Maintenance
0830 - 0930	Installation Guidelines & Procedures • Testing & Commissioning MCCs •
0030 - 0930	Routine & Preventive Maintenance Practices • Common Troubleshooting
	Techniques
0930 - 0945	Break

IE0068 - Page 8 of 15

ilm

IACET

9

0945 – 1100	<i>Types of Starters in MCCs</i> <i>Direct-On-Line</i> (DOL) <i>Starter</i> • <i>Star-Delta Starter</i> • <i>Soft Starters</i> • <i>Applications & Differences Among Starters</i>
1100 - 1215	Protection Devices in MCC Overload Relays & Circuit Breakers • Short-Circuit Protection Devices • Thermal Protection & Fuses • Coordination of Protection Devices
1215 – 1230	Break
1230 - 1330	Communication & Smart MCCs Intelligent MCCs (iMCCs) Overview • Integration of MCC with SCADA & DCS Systems • Use of Smart Devices in MCC • Data Monitoring & Diagnostics in iMCCs
1330 - 1420	Practical Exercises Identifying MCC Components • Reading MCC Wiring Diagrams • Hands-on Assembly of a Basic MCC Panel • Simulated Troubleshooting Exercises
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3

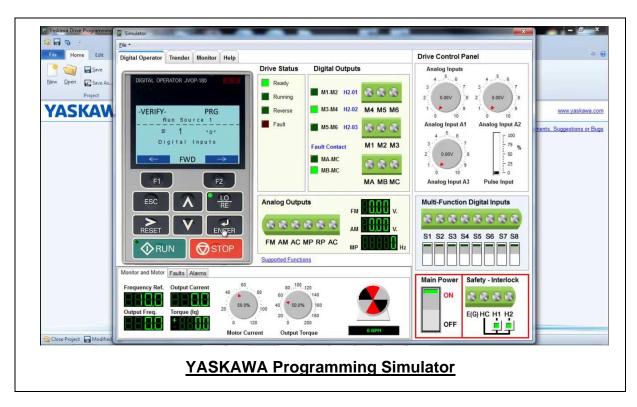
VFD Principles of Operation
Working Principle of VFDs • Pulse Width Modulation (PWM) in VFDs •
Frequency & Voltage Control • VFD Efficiency & Energy Savings
VFD Components & Design
<i>Rectifier & Inverter Units</i> • <i>Filters & Capacitors</i> • <i>Cooling Systems in VFDs</i> •
User Interfaces & Displays
Break
VFD Configuration & Programming
Understanding VFD Parameters • Setting up Acceleration & Deceleration
<i>Times</i> • <i>Torque & Speed Control Settings</i> • <i>Integration with External Controls</i>
(PLCs, HMIs)
VFD Protection Mechanisms
Overcurrent & Overvoltage Protection • Thermal Overload & Ground Fault
Protection • Common Fault Codes & Remedies • Maintenance Practices for
VFD Systems
Break
Applications of VFD Systems
Pump & Fan Control • Conveyor Belt Systems • HVAC Applications •
Specialized Applications (e.g., Cranes, Lifts)
Hands-on VFD Exercise
Connecting a Motor to a VFD • Parameter Setup for Specific Applications •
Troubleshooting Common VFD Issues • Live Demonstration of Energy
Savings
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the
<i>Topics that were Discussed Today & Advise Them of the Topics to be Discussed</i>
Tomorrow
Lunch & End of Day Three

IE0068 - Page 9 of 15

Day 4	
	Interfacing MCC & VFD Systems
0730 - 0830	Wiring & Communication Setup • Protocols for MCC-VFD Communication •
	Synchronization of Multiple Drives • Case Studies of MCC-VFD Integration
	Automation Control with MCC & VFD
0830 - 0930	Role of PLCs in MCC & VFD Integration • Configuring HMIs for MCC &
0830 - 0930	VFD Control • Real-time Monitoring & Data Logging • Alarm & Fault
	Management
0930 - 0945	Break
	Energy Efficiency & Power Quality
0945 – 1100	Energy-Saving Strategies with MCC & VFD • Power Quality Issues &
0945 - 1100	Mitigation Techniques • Harmonics in VFD Systems • Role of Filters &
	Reactors
	Safety in MCC & VFD Operations
1100 – 1215	Electrical & Mechanical Safety Measures • Lockout/Tagout Procedures • Risk
	Assessment for MCC & VFD Systems • Emergency Shutdown Procedures
1215 – 1230	Break
	Advanced Features of VFDs
1230 – 1330	Multi-Motor Control • Regenerative Braking • Dynamic Braking Resistors •
	Custom Programming Options
	Practical Case Study
1330 - 1420	Simulated Industrial Scenario • Designing an Integrated MCC-VFD System •
1550 - 1420	Configuring Parameters for Specific Applications • Testing the Integrated
	System
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5

Duyo	
0730 - 0830	<i>Advanced Industrial Applications</i> <i>Process Automation with MCC & VFD</i> • <i>Integration with SCADA/DCS</i> <i>Systems</i> • <i>Predictive Maintenance Systems</i> • <i>IIoT Applications in MCC &</i> <i>VFD Systems</i>
0830 - 0930	Diagnostics & Troubleshooting Using Diagnostic Tools for MCC & VFD • Step-by-Step Troubleshooting Methodology • Analyzing Fault Logs & System Reports • Real-World Problem-Solving Scenarios
0930 - 0945	Break
0945 – 1100	Retrofitting & Upgrading Systems Modernizing Existing MCC Systems • Upgrading VFDs for Higher Performance • Energy Efficiency Retrofitting Techniques • Cost-Benefit Analysis of Upgrades
1100 – 1200	Compliance & Standards Industrial Automation Standards (IEC, IEEE, NEMA) • Environmental Regulations (EMI/EMC Compliance) • Electrical Codes & Certifications • Documentation & Reporting Requirements
1200 – 1215	Break
	IE0068 - Page 10 of 15 IE0068 - Page 10 of 15 IE0068-04-25/Rev.00/16 January 2025



1215 – 1300	Capstone Project Design & Implement a Real-World Automation System • MCC & VFD Integration for a Specific Application • Presentation & Demonstration of the Project • Feedback & Evaluation
1300 - 1315	Course Conclusion
1315 - 1415	COMPETENCY EXAM
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Yaskawa Programming Simulator".

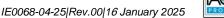
IE0068 - Page 11 of 15

Allen Bradley SLC 500 Simulator

Allen Bradley Micrologix 1000 Simulator (Digital)

Allen Bradley SLC 5/03

Siemens S7-200 Simulator


Allen Bradley Micrologix 1000 Simulator (Analog)

Allen Bradley WS5610 PLC Simulator PLC5

IE0068 - Page 12 of 15

🛢 Daniel Gas USM Sizing Tool 📃 🗌 🔀
File Product Literature Help
Process Specifications Project Gas Gas Gas Gas Composition Base Composition Base Composition Base Composition Base Conditions Is pressure gas o Do De C
Flowsale has not been provided, default to 10% of Max/Denating flowsale and use Max/Denating Pard T. Minimum Operating Maximum Users Flowsale Flowsa
Pressure 500 1100 1100 psi 💌
MaxMin Row Conditions Maintum velocity may occur at the highest or formet Maximum Velocity may occur at the highest or formet maintum Row occurs at Max Pressure Min Temperature Min Tempera
Flow and SCFD Pressure (ps) Temperature (DegF) Max Flow Condition 1500.000,000 500 120 Operating Flow Condition 1500.000,000 1100 120 Min Flow Condition 75.000,000 1100 50
Bock Next Est

Turbine Meter Selection					Valve Selection					_	
Project Title /		Fluid Lis	Fluid t <mark>Gasoline</mark>		_	Specific Gravity 0.72 Spe	/ Density cific Gravity	•	Viscosity	Centistoke	•
Flow Rate	Minimum	200	Operating 400	Maximum	600	Units Gallons		¥	Per Minute	•	
Temperature		20	60		100	⊙ °F	0.10				
Pressure			60		100	PSI		•			
leter Selection Tutbine C Meter C) Series 1) Series 1	500	ine Meter.								

Gas Ultrasonic Meter (USM) Sizing Tool Software

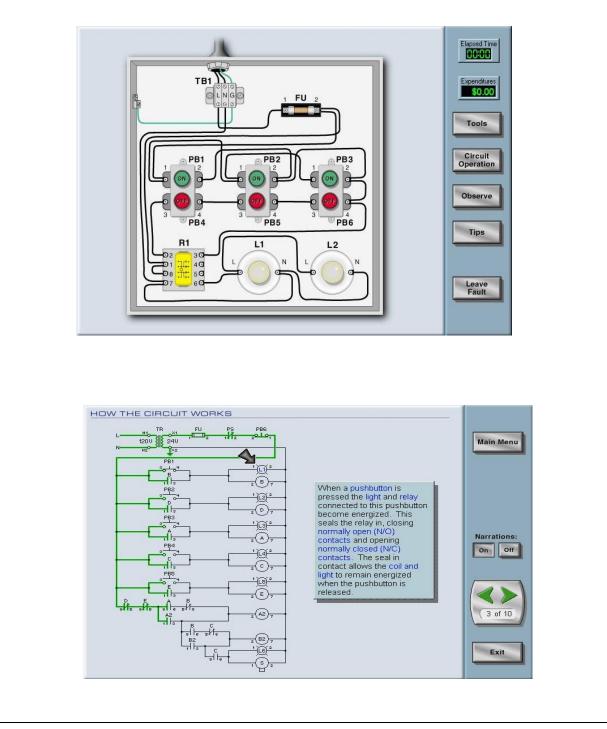
Liquid Turbine Meter and Control Valve Sizing Tool Software

Project Title / Tag	Fluid List	Fluid Gasoline			aravity / Dens kg/cubic r		Viscosity	Centistoke
Flow Rate	200	Operating 400	Maximum	0r 600 C	its ubic Meters	Ţ	Per Hour	T
Temperature	20	60		100 C	'F 🖲 '	С		
Pressure		60		100 k	Pa	•		
				e 1 .				
Material Carbon Steel Body and F	langes (-46°C t		NSI Class Ra 150 ANSI / PN :			50°C to 100°C) with NBR o-	ings 🔄
	ilanges (-46°C) Schedule	o 150°C) 💌	150 ANSI / PN : Bore ID		I transducer (-	er Linearity) with NBR o- Flow Directi	
Carbon Steel Body and F	Schedule	o 150°C) 💌	150 ANSI 7 PN 3		I transducer (-			on

Liquid Ultrasonic Meter Sizing <u>Tool Software</u>

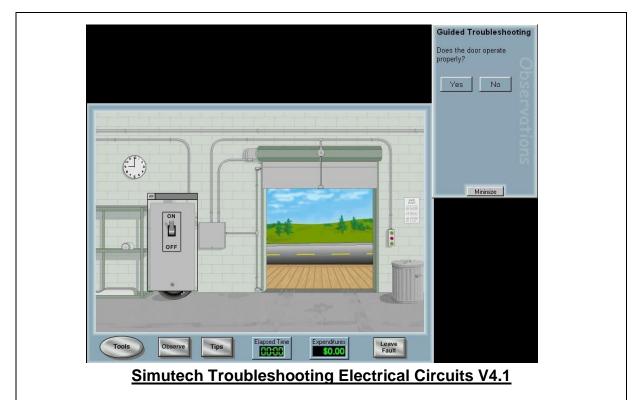
Daniel Orifice	e Flow Calcula	lor	
File About			
		Measurement Orifice	
Specific Gravity	Flowing Specific Gravity	C User Entered Base C Calculated (from density)	ific Gravity
- Density	operating	Saturated Saturated Saturated Superheated C From ASME Table	Ţ
Pipe Nominal Size 2	Inches Inches	Pipe 10 2067" Sch 40, STD, Sch 40S	Flow Type
C Calculate Flow Rate		Galons Per Minute	C Steam
Calculate C Differential Pressure	Differential Pr	Inches Water	⊂ Air • Gas
Calculate Beta Ratio	- Beta Ratio -	Onfice Bore Diameter	Print
Incomplete fluic	l data (Flowing	Specific Gravity, Base Specific Gravity).	Exit

Orifice Flow Calculator Software



IE0068 - Page 13 of 15

Haward Technology Middle East



IE0068 - Page 14 of 15

Haward Technology Middle East

<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

IE0068 - Page 15 of 15

