

<u>COURSE OVERVIEW IT0033</u> <u>Machine Learning Basics - Understanding Supervised,</u> <u>Unsupervised & Reinforcement Learning</u>

O CEUS

(30 PDHs)

AWAT

Course Title

Machine Learning Basics - Understanding Supervised, Unsupervised & Reinforcement Learning

Course Date/Venue

- Session 1: April 27-May 01, 2025/Tamra Meeting Room, Al Bandar Rotana Creek, Dubai UAE
- Session 2: August 25-29, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

IT0033

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Objectives

This hands-on, highly-interactive course includes reallife case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Machine Learning Basics - Understanding Supervised, Unsupervised and Reinforcement Learning. It covers the importance of machine learning and its applications in various industries; the types of machine learning covering supervised learning, unsupervised learning and reinforcement learning; the data preprocessing for machine learning and regression and classification in supervised learning; the structure of decision trees, entropy and information gain in decision trees, overfitting and pruning techniques as well as the advantages of random forests over decision trees; the support vector machines (SVM) and neural networks in supervised learning, model evaluation and validation techniques; and the hyperparameter tuning in supervised learning.

Further, the course will also discuss the differences between supervised and unsupervised learning including its advantages and disadvantages; the types of clustering covering hierarchical, partitioning and density-based; the similarity measures comprising of euclidean, manhattan and cosine; the dimensionality reduction techniques covering principal component analysis (PCA), t-SNE for non-linear dimensionality reduction; and the practical applications of dimensionality reduction.

IT0033- Page 1 of 9

IT0033-04-25|Rev.00|18 March 2025

During this interactive course, participants will learn the basics of reinforcement learning, markov decision processes (MDP), Q-learning algorithm and deep reinforcement learning (DRL); the challenges and limitations of reinforcement learning, the concept and benefits of transfer learning; pretrained models in supervised learning and transfer learning in reinforcement learning; and the generative models, explainability and interpretability in ML models and deploying machine learning models.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a fundamental knowledge on machine learning
- Discuss the importance of machine learning and its applications in various industries
- Identify the types of machine learning covering supervised learning, unsupervised learning and reinforcement learning
- Carryout data preprocessing for machine learning and regression and classification in supervised learning
- Describe the structure of decision trees, entropy and information gain in decision trees, overfitting and pruning techniques and advantages of random forests over decision trees
- Recognize support vector machines (SVM) and neural networks in supervised learning as well as apply model evaluation and validation techniques and hyperparameter tuning in supervised learning
- Discuss the differences between supervised and unsupervised learning including its advantages and disadvantages
- Identify the types of clustering covering hierarchical, partitioning and densitybased and similarity measures comprising of euclidean, manhattan and cosine
- Apply dimensionality reduction techniques covering principal component analysis (PCA), t-SNE for non-linear dimensionality reduction and practical applications of dimensionality reduction
- Discuss the basics of reinforcement learning, markov decision processes (MDP), Q-learning algorithm and deep reinforcement learning (DRL)
- Explain the challenges and limitations of reinforcement learning, concept and benefits of transfer learning, pretrained models in supervised learning and transfer learning in reinforcement learning
- Discuss generative models, explainability and interpretability in ML models and deploying machine learning models

IT0033- Page 2 of 9

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of machine learning basics - understanding supervised, unsupervised and reinforcement learning for beginners in machine learning, aspiring data scientists, software engineers and developers, business analysts and data analysts, students and researchers in related fields, product managers and tech leads, entrepreneurs and innovators.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

IT0033- Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:

• *** * BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

IT0033- Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Abedallah Al-Oqaili, PhD, MSc, is a Senior IT Engineer with over 30 years of teaching and industrial experience in the areas of MS Excel, MS WinWord, MS PowerPoint, ERP SAP 6.0, Artificial Intelligence & Neural Network, Cyber Ethical Hacking, Windows Operating System, Windows Server Administration, Python Programming, MS Office 365 BI, Digital Strategy & Transformation, Data Base Design, Computer Maintenance, System Analysis & Design, SQL Programming, Decision Support Systems & Business Intelligence, SQL, PL/SQL,

C, C++, Java, Computer Applications, Scripting Languages, VB, VB.Net, Simulation & Modelling, Management Information Systems, E-commerce, Oracle HRMS, Oracle Forms & Reports, Oracle PL/SQL, Problem Solving Technique, Oracle ERP, ERP Customized Oracle Application, Organization & System Process, User Acceptance Testing (UAT), Core HR, Payroll, SSHR, OLM, IRec, Medical, RTA & Provident Fund, Oracle Developer/2000, Oracle 7.3 & Oracle 8i System, Oracle & FoxPro for Windows, DBASE III+, Clipper, FoxPro 2.1, JDeveloper: Building Applications with ADF, Oracle Developer, Oracle WebDB, J2EE (Java 2 Enterprise Edition), Java Programming, Oracle Payroll Fast Formula, Oracle: Internet Application I, Oracle 8i DBA, Oracle 8i Forms 1&2, Oracle 8i Report, Oracle Application Server Rel. 4.0, Oracle DBA, Building Web Sites on the Internet, Visual Basic 5, Oracle7 SQL, Oracle Reports V2.5, Oracle Forms V4.5/V5.0/V6.0/V6i, Oracle Server Administrations, Software Systems Analysis & Design, General Orientation Course at ATOS, Application Engineering (PC Based System Design & Development), Novell 3.11, Novell NetWare, Lotus 123, Excel and Word Processing. Further, he is also well-versed in Project Management, Project Analysis, Design and Development for Mail Revenue & Handling System, Leadership Training, Manager Skills, Supervisory Skills, Microsoft Project, Advanced Excel, Instructional Techniques, Oracle Mobile Development Framework and Technical Writing.

During his career life, Dr. Abedallah has gained his technical and practical expertise through a variety of challenging and key positions such as the IT Senior Manager, IT Manager, IT Project Manager, IT Trainer, Management Information System Faculty Head, Computer Science College Professor, Computer and Business Networking Department Trainer, IT Superintendent, IT Software Supervisor, IT System Analyst and IT Programmer for various international companies such as the PAAET Basic Education College, Philadelphia University, Royal Jordan Airlines and Abu Al-Haj Training Center.

Dr. Abedallah has a PhD in Computer Information Systems and a Master's degree in Information System from the University of Banking and Financial Sciences, Computer Information Systems. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership and Management (ILM), a Certified Systems Engineer & Systems Administrator (Security, Microsoft Office Specialist and Microsoft Certified IT Professional) and has delivered numerous trainings, conferences and workshops worldwide.

IT0033- Page 5 of 9

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Machine Learning</i> Definition and Importance of Machine Learning • Traditional Programming versus Machine Learning • Applications of Machine Learning in Various Industries • Challenges and Limitations of Machine Learning
0930 - 0945	Break
0945 - 1040	Types of Machine LearningSupervised Learning: Definition and Use Cases • Unsupervised Learning:Definition and Use Cases • Reinforcement Learning: Definition and UseCases • Key Differences and Applications of Each Type
1040 - 1135	Data Preprocessing for Machine Learning Importance of Data Quality • Handling Missing and Outlier Data • Feature Scaling and Normalization • Splitting Data into Training, Validation and Test Sets
1135 - 1230	Overview of Supervised Learning Definition and Concept of Supervised Learning • Labeling Data and the Role of Output Variables • Common Applications (Spam Detection, Fraud Detection) • Advantages and Limitations of Supervised Learning
1230 - 1245	Break
1245 - 1335	Regression in Supervised LearningUnderstanding Regression Problems • Linear Regression: Concepts andApplications • Multiple Regression versus Simple Regression • EvaluatingRegression Models (MSE, RMSE, R ² Score)
1335 - 1420	Classification in Supervised Learning Understanding Classification Problems • Logistic Regression and Decision Boundaries • Performance Metrics: Accuracy, Precision, Recall, F1-Score • Applications (Email Spam Classification, Sentiment Analysis)
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830	Decision Trees & Random Forests Structure of Decision Trees • Entropy and Information Gain in Decision Trees • Overfitting and Pruning Techniques • Advantages of Random Forests over Decision Trees
0830 - 0900	<i>Support Vector Machines (SVM)</i> Understanding the Hyperplane Concept • Linear versus Non-Linear SVM • Kernel Trick for Complex Classification Problems • Pros and Cons of Using SVM

IT0033- Page 6 of 9

0900 - 0915	Break
0915 – 1100	Neural Networks in Supervised Learning Basics of Artificial Neural Networks (ANN) • Activation Functions (Sigmoid, ReLU, Tanh) • Backpropagation and Gradient Descent • Use Cases in Supervised Learning
1100 – 1230	Model Evaluation & Validation TechniquesTrain-TestSplitversusCross-Validation•Bias-VarianceTradeoff•Underfitting versusOverfitting•ModelPerformanceMetrics
1230 – 1245	Break
1245 - 1335	Hyperparameter Tuning in Supervised LearningImportance of Hyperparameters • Grid Search versus Random Search • UsingCross-ValidationforHyperparameterOptimizationHyperparameterTuning with AI Tools
1335 - 1420	Supervised Learning Case Study & Hands-on Practice Implementing Classification Using Sklearn • Hands-on: Logistic Regression for Predicting Loan Approval • Hands-on: Decision Tree for Customer Churn Prediction • Discussion on Model Selection & Practical Challenges
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

0730 - 0830	Unsupervised Learning Definition and Kay Characteristics • Differences Between Supervised and
	Unsupervised Learning • Advantages and Disadvantages of Unsupervised
	Learning • Amilications (Market Segmentation Anomaly Detection)
	Clustering in Unsupervised Learning
	Introduction to Clustering • Types of Clustering (Hierarchical, Partitioning,
0830 - 0900	Density-Based) • Similarity Measures (Euclidean, Manhattan, Cosine) •
	Real-World Applications of Clustering
0900 - 0915	Break
	K-Means Clustering
0015 1100	Understanding the K-Means Algorithm • Selecting the Optimal Number of
0313 - 1100	<i>Clusters (Elbow Method, Silhouette Score)</i> • <i>Strengths and Weaknesses of K-</i>
	Means • Hands-on Exercise: Customer Segmentation
	Hierarchical Clustering
1100 1230	Concept of Dendrograms • Agglomerative versus Divisive Clustering •
1100 - 1250	Choosing the Right Linkage Method (Single, Complete, Average) • Real-
	World Use Cases (Genomics, Social Network Analysis)
1230 – 1245	Break
1245 - 1335	Dimensionality Reduction Techniques
	Introduction to Curse of Dimensionality • Principal Component Analysis
	(PCA) • t-SNE for Non-Linear Dimensionality Reduction • Practical
	Applications of Dimensionality Reduction

IT0033- Page 7 of 9

1335 - 1420	Unsupervised Learning Case Study & Hands-on Practice
	Implementing K-Means Clustering with Python • Hands-on: Customer
	Segmentation Using K-Means • Hands-on: PCA for Feature Reduction in
	Image Processing • Discussion on Challenges and Best Practices
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 - 0830	Reinforcement Learning
	Understanding the RL Paradigm • Key Components (Agent, Environment,
	Reward, Action) • Comparison Between RL and Supervised/Unsupervised
	Learning • Applications (Game Playing, Robotics, Autonomous Vehicles)
	Markov Decision Processes (MDP
0830 - 0930	Introduction to MDPs • Policy, Reward and State-Action Transitions •
	Bellman Equation in RL • Practical Example of MDP in Decision Making
0930 - 0945	Break
	Q-Learning Algorithm
0945 1100	Understanding the Q-Table • Epsilon-Greedy Algorithm for Exploration &
0945 - 1100	Exploitation • Q-Learning versus SARSA Algorithm • Practical
	Implementation of Q-Learning in Python
	Deep Reinforcement Learning (DRL)
1100 1215	Introduction to Deep Q-Networks (DQN) • Policy Gradients and Actor-
1100 - 1215	Critic Methods • Combining Neural Networks with RL • Real-World
	Applications of Deep RL
1215 - 1230	Break
	Challenges & Limitations of Reinforcement Learning
1245 - 1335	Sample Efficiency and Computational Costs • Exploration-Exploitation
1245 - 1555	Tradeoff • Generalization in Reinforcement Learning • Ethical Concerns in
	RL Applications
	Reinforcement Learning Case Study & Hands-on Practice
1335 - 1420	Implementing Q-Learning for Maze Solving • Hands-on: Training an RL
1555 - 1420	Agent in OpenAI Gym • Hands-on: Reinforcement Learning for Stock
	Trading • Discussion on RL in Robotics & Automation
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about
	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0830	Transfer Learning in Machine Learning Concept and Benefits of Transfer Learning • Pretrained Models in Supervised Learning • Transfer Learning in Reinforcement Learning • Use Cases (Image Recognition, NLP)
0830 - 0930	<i>Generative Model</i> <i>Generative Adversarial Networks (GANs)</i> • <i>Variational Autoencoders</i> <i>(VAEs)</i> • <i>Applications in Image & Text Generation</i> • <i>Limitations and Ethical</i> <i>Considerations</i>

IT0033- Page 8 of 9

0930 - 0945	Break
0945 - 1100	<i>Explainability & Interpretability in ML Models</i> Why Interpretability Matters in ML • SHAP (SHapley Additive ExPlanations) • LIME (Local Interpretable Model-Agnostic Explanations) • Addressing Bias in Machine Learning Models
1100 – 1215	Real-World Machine Learning Applications Machine Learning in Healthcare • Machine Learning in Finance (Fraud Detection) • Machine Learning in Autonomous Systems • Future Trends in Machine Learning
1215 – 1230	Break
1230 – 1300	Deploying Machine Learning Models Introduction to Model Deployment • Model Serving with Flask/Django • Cloud-Based Deployment (AWS, GCP, Azure) • Automating ML Pipelines with MLOp
1300 - 1345	<i>Final Hands-On Project & Review</i> <i>Implementing a Real-World ML Project • Model Selection and Optimization</i> <i>Techniques • Best Practices for Machine Learning Development</i>
1345 – 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about a Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u> This hands-on, highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

IT0033- Page 9 of 9

IT0033-04-25|Rev.00|18 March 2025