

COURSE OVERVIEW ME0897 API 670: Machinery Protection Systems

Course Title

API 670: Machinery Protection Systems

Course Date/Venue

May 04-08, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

(30 PDHs)

Course Reference ME0897

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of API 670: Machinery Protection Systems. It covers the purpose and scope of API 670 and the key components and systems in machinery protection; the basic principles of vibration monitoring, types of vibration sensors, signal processing for vibration analysis and common causes of excessive vibration; the importance of temperature monitoring and types of temperature sensors used in protection systems; and the pressure and flow monitoring, displacement and proximity sensing including machinery protection system (MPS) architecture.

Further, the course will also discuss the detailed vibration analysis techniques and transient vibration analysis; integrating vibration data with other monitoring systems; the signal conditioning and data processing for vibration systems using filtering and noise reduction techniques; the signal amplification and conversion methods including data storage and retrieval in vibration monitoring systems; the common machinery types, configurations machinery and challenges in turbomachinery monitoring; the role of hydraulic and pneumatic controls in machinery; monitoring hydraulic oil condition and flowing; troubleshooting pneumatic systems in machinery; the trip systems and design considerations for API 670 compliant systems; and the root cause analysis (RCA) in machinery protection.

ME0897- Page 1 of 10

During this interactive course, participants will learn the condition-based monitoring (CBM), data analytics in machinery protection and remote monitoring and real-time data management; the failure mode and effects analysis (FMEA) for machinery protection; combining API 670 with other standards; the risk-based maintenance strategies and developing risk profiles for critical assets; setting risk-based maintenance priorities and reviewing RBI best practices in the petroleum sector; the key cybersecurity threats to protection systems and the best practices for securing API 670 systems; the role of firewalls, encryption, and access controls; monitoring system effectiveness and identifying gaps and improvement areas; preparing API 670 audits and developing checklist for compliance assessment; and the documentation and record-keeping requirements and corrective actions for non-compliance findings.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on machinery protection systems in accordance with the API 670 standard
- Discuss purpose and scope of API 670 and the key components and systems in machinery protection
- Recognize the basic principles of vibration monitoring, types of vibration sensors, signal processing for vibration analysis and common causes of excessive vibration
- Identify the importance of temperature monitoring and types of temperature sensors used in protection systems
- Illustrate pressure and flow monitoring, displacement and proximity sensing including machinery protection system (MPS) architecture
- Carryout detailed vibration analysis techniques and transient vibration analysis as well as integrate vibration data with other monitoring systems
- Apply signal conditioning and data processing for vibration systems using filtering and noise reduction techniques
- Discuss signal amplification and conversion methods including data storage and retrieval in vibration monitoring systems
- Recognize common machinery types and configurations machinery and challenges in turbomachinery monitoring
- Identify the role of hydraulic and pneumatic controls in machinery, monitor hydraulic oil condition and flow and troubleshoot pneumatic systems in machinery
- Implement trip systems, recognize design considerations for API 670 compliant systems and apply root cause analysis (RCA) in machinery protection
- Employ condition-based monitoring (CBM), data analytics in machinery protection, remote monitoring and real-time data management
- Carryout failure mode and effects analysis (FMEA) for machinery protection including setting up condition monitoring programs
- Combine API 670 with other standards and enhance interoperability across equipment
- Apply risk-based maintenance strategies and develop risk profiles for critical assets

ME0897- Page 2 of 10

- Set risk-based maintenance priorities and review RBI best practices in the petroleum sector
- Identify the key cybersecurity threats to protection systems and best practices for securing API 670 systems
- Define the role of firewalls, encryption, and access controls and ensure data integrity and system resilience
- Monitor system effectiveness and identify gaps and improvement areas
- Prepare API 670 audits, develop checklist for compliance assessment and apply documentation and record-keeping requirements and corrective actions for noncompliance findings

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of machinery protection systems for machine operators, machine maintenance personnel, process engineers, production engineers, controls engineers, electricians, design engineers, corporate safety committee, integrators and for those who are involved with plant safety.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

ME0897- Page 3 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- BAC
- British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

ME0897- Page 4 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience. His wide expertise includes Piping & Pipeline, Maintenance, Repair, Shutdown, Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability

Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water **Network Design**, Industrial **Water Treatment** in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the **Project** Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a **Registered Professional Engineer** in the **USA** and **Greece** and has a **Master's** and **Bachelor's** degree in **Mechanical Engineering** with **Honours** from the **Purdue University** and **SIU** in **USA** respectively as well as an **MBA** from the **University** of **Phoenix** in **USA**. Further, he is a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide

ME0897- Page 5 of 10

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 04 th of May 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Overview of API 670 Standard</i> <i>Purpose and Scope of API 670 • Key Components and Systems in Machinery</i> <i>Protection • Role of API 670 in Reliability and Maintenance • Compliance and</i> <i>Industry Applications</i>
0930 - 0945	Break
0945 - 1030	Vibration Monitoring Basic Principles of Vibration Monitoring • Types of Vibration Sensors (e.g., Velocity, Acceleration) • Signal Processing for Vibration Analysis • Common Causes of Excessive Vibration
1030 – 1130	Temperature Monitoring in Machinery Importance of Temperature Monitoring • Types of Temperature Sensors Used in Protection Systems • Temperature Monitoring for Rotating and Reciprocating Equipment • Interpreting Temperature Data for Fault Diagnosis
1130 – 1215	Pressure & Flow Monitoring Role of Pressure and Flow in Machinery Health • Types of Pressure and Flow Sensors • Installation Best Practices for Accurate Measurements • Common Pressure and Flow Anomalies and Their Causes
1215 - 1230	Break
1230 - 1330	Displacement & Proximity Sensing Understanding Displacement and Proximity Sensors • Types of Proximity Probes and Their Applications • Calibration and Maintenance of Proximity Probes • Application in Machinery Protection and Gap Detection
1330 - 1420	<i>Machinery Protection System (MPS) Architecture</i> <i>Key Components of MPS</i> • <i>System Communication Protocols</i> • <i>Role of</i> <i>Redundancy in Protection Systems</i> • <i>Basic Troubleshooting and Maintenance</i> <i>Practices</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday, 05 th of May 2025
0730 - 0830	Detailed Vibration Analysis Techniques
	Spectrum Analysis and its Significance • Waveform and Time-Domain
	Analysis • Understanding Phase Data in Vibration Analysis • Balancing and
	Alignment Impacts on Vibration
0830 - 0930	Transient Vibration Analysis
	Monitoring and Analyzing Transient Events • Critical Speeds and Resonance
	Detection • Start-up and Shutdown Vibration Profiles • Case Studies in
	Transient Vibration Issues
0930 - 0945	Break

ME0897- Page 6 of 10

0945 - 1100	Case Studies in Vibration Diagnostics
	Analysis of Common Faults (e.g., Misalignment, Unbalance) • Examples of
	Bearing and Gear Vibration Signatures • Interpreting Vibration Patterns for
	Troubleshooting • Best Practices in Corrective Actions
1100 1215	Integration of Vibration Data with Other Monitoring Systems
	Synchronizing Vibration with Temperature Data • Combining Pressure, Flow,
1100 – 1215	and Vibration Insights • Data Integration for Holistic Machinery Health
	Assessment • Building Predictive Models for Failure Prevention
1215 - 1230	Break
	Signal Conditioning & Data Processing for Vibration Systems
1230 - 1330	Importance of Signal Conditioning in Accurate Measurement • Filtering and
1230 - 1330	Noise Reduction Techniques • Signal Amplification and Conversion Methods •
	Data Storage and Retrieval in Vibration Monitoring Systems
	Hands-On Session: Vibration Monitoring Setup
1220 1420	Installation and Calibration of Vibration Sensors • Configuring Alarm and
1330 - 1420	Trip Settings • Data Logging and Trending Practices • Troubleshooting
	Common Sensor Issues
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 06 th of May 2025
0730 - 0830	<i>Monitoring Turbomachinery</i> <i>Common Machinery Types and Configurations</i> • <i>Challenges in</i> <i>Turbomachinery Monitoring</i> • <i>High-Speed Rotor Dynamics and Bearing</i> <i>Health</i> • <i>Strategies for Protecting Critical Assets</i>
0830 - 0930	<i>Hydraulic & Pneumatic Systems in Protection</i> Role of Hydraulic and Pneumatic Controls in Machinery • Monitoring Hydraulic Oil Condition and Flow • Common Hydraulic Failures and Their Impact • Troubleshooting Pneumatic Systems in Machinery
0930 - 0945	Break
0945 - 1100	Understanding & Implementing Trip Systems Types of Trip Systems and API 670 Requirements • Configuration and Testing of Trip Systems • Practical Considerations for Trip Points and Alarms • Preventive Maintenance of Trip Systems
1100 - 1215	Design Considerations for API 670 Compliant Systems Mechanical and Electrical Design Requirements • Sensor Placement for Optimal Protection • Wiring and Grounding Best Practices • Factors Influencing System Reliability
1215 – 1230	Break
1230 - 1330	 <i>Root Cause Analysis (RCA) in Machinery Protection</i> <i>Introduction to RCA Techniques</i> • <i>Tools and Methods for Failure Investigation</i> • <i>Documentation and Reporting for RCA</i> • <i>Implementing Corrective Actions from RCA Findings</i>

ME0897- Page 7 of 10

1330 - 1420	<i>Hands-On Session: Protective Systems Testing & Calibration</i> <i>Functional Testing of API 670 Systems</i> • <i>Calibration Procedures for Sensors</i> <i>and Alarms</i> • <i>Diagnostic Testing and Troubleshooting Exercises</i> • <i>Documentation of Calibration and Test Results</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the T were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 07 th of May 2025
0730 - 0830	Condition-Based Monitoring (CBM)
	Principles and Importance of CBM • Benefits Over Reactive Maintenance
	Approaches • Key Technologies in CBM for Machinery Protection •
	Integration with Maintenance Planning
	Data Analytics in Machinery Protection
0020 0020	Data Collection Techniques and Challenges • Analytical Tools for Data
0830 - 0930	Interpretation • Developing Data-Driven Maintenance Insights • Role of
	Artificial Intelligence in Data Analysis
0930 - 0945	Break
	Remote Monitoring & Real-Time Data Management
0045 1100	Basics of Remote Monitoring Systems • Cloud Solutions for Real-Time Data •
0945 – 1100	Alarm and Notification Management • Case Studies in Remote Monitoring
	Effectiveness
	Failure Mode & Effects Analysis (FMEA) for Machinery Protection
1100 – 1215	Introduction to FMEA Methodology • Identifying Critical Failure Modes in
1100 - 1215	Machinery • Mitigating High-Risk Failure Points • Documenting and
	Updating FMEA Results
1215 – 1230	Break
	Setting Up Condition Monitoring Programs
1000 1000	Goals and Objectives of Condition Monitoring • Program Design and
1230 – 1330	Component Selection • Periodic Assessment and Improvement Strategies •
	Defining KPIs for Program Success
1330 - 1420	Hands-On Session: Data Interpretation & Analysis
	Real-World Case Studies in Data Interpretation • Exercises in Trending and
	Anomaly Detection • Building Maintenance Recommendations from Data
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

ME0897- Page 8 of 10

Day 5:	Thursday, 08 th of May 2025
0730 - 0830	System Integration: Combining API 670 with Other Standards
	Overview of Relevant Standards (e.g., ISO, API 618) • API 670 Compliance in
	Multi-Standard Environments • Integrating Protection Systems with Safety
	Systems • Enhancing Interoperability Across Equipment
	Risk-Based Maintenance Strategies
0830 - 0930	Overview of Risk-Based Inspection (RBI) Principles • Developing Risk Profiles
0830 - 0930	for Critical Assets • Setting Risk-Based Maintenance Priorities • Reviewing
	RBI Best Practices in the Petroleum Sector
0930 - 0945	Break
	Cybersecurity in Machinery Protection Systems
0945 – 1100	Key Cybersecurity Threats to Protection Systems • Best Practices for Securing
0945 - 1100	API 670 Systems • Role of Firewalls, Encryption and Access Controls •
	Ensuring Data Integrity and System Resilience
	Program Evaluation & Continuous Improvement
1100 – 1215	Monitoring System Effectiveness • Identifying Gaps and Improvement Areas •
1100 - 1215	Continuous Learning and Knowledge Management • Case Studies in
	Successful Program Optimization
1215 – 1230	Break
	API 670 Audits & Compliance Check
1230 – 1300	Preparing for API 670 Audits • Checklist for Compliance Assessment •
1250 - 1500	Documentation and Record-Keeping Requirements • Corrective Actions for
	Non-Compliance Findings
1300 - 1315	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about a
	Topics that were Covered During the Course
1315 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

ME0897- Page 9 of 10

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "iLearnVibration".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME0897- Page 10 of 10

