

COURSE OVERVIEW HE0571 Environmental Professional In-Training (EPI)

(BGC-EPI Exam Preparation Training)

Course Title

Environmental Professional In-Training (EPI): (BGC-EPI Exam Preparation Training)

Course Date/Venue

Session 1: April 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: September 22-26, 2025/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

(30 PDHs)

Course Reference

HE0571

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Environmental Professional In-Training (EPI. It covers the importance of environmental science, environmental laws and regulations; the ecosystems biodiversity, environmental chemistry, toxicology, soil science and land pollution: the role microorganisms in the environment; and the biodegradation, bioremediation processes. pathogens and environmental health risks and microbial monitoring in water and soil.

Further, the course will also discuss the environmental health, risk assessment, water pollution and treatment, hydrology and water resource management; the air pollution and control technologies, solid and hazardous management and noise pollution and control; the development sustainable and environmental planning; and the environmental regulations and standards.

During this interactive course, participants will learn the occupational and environmental safety, hazardous materials and spill prevention; the environmental ethics and social responsibility; the environmental monitoring and sampling techniques; the causes and impacts of climate change and the mitigation and adaptation strategies; the industrial environmental management including environmental data analysis and GIS applications; the interconnections between water, energy, and food systems; the sustainable resource management and climate resilient agricultural practices; the urban environmental issues, ecotoxicology and environmental forensics; and the disaster risk reduction and environmental resilience.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the next EPI Exam and have enough knowledge and skills to pass such exam in order to get the Environmental Professional In-Training (EPI) from the Board for Global EHS Credentialing (BGC)
- Discuss the importance of environmental science including the environmental laws and regulations
- Explain ecosystems and biodiversity, environmental chemistry, toxicology, soil science and land pollution
- Define the role of microorganisms in the environment and interpret biodegradation, bioremediation processes, pathogens and environmental health risks and microbial monitoring in water and soil
- Carryout environmental health and risk assessment, water pollution and treatment and hydrology and water resource management
- Apply air pollution and control technologies, solid and hazardous waste management and noise pollution and control
- Employ sustainable development and environmental planning and discuss environmental regulations and standards
- Carryout occupational and environmental safety as well as hazardous materials and spill prevention
- Discuss environmental ethics and social responsibility and apply environmental monitoring and sampling techniques
- Identify the causes and impacts of climate change and apply mitigation and adaptation strategies
- Apply industrial environmental management including environmental data analysis and GIS applications
- Explain the interconnections between water, energy, and food systems and carryout sustainable resource management and climate resilient agricultural practices
- Recognize urban environmental issues, ecotoxicology and environmental forensics as well as disaster risk reduction and environmental resilience

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**®). The **H-STK**® consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a basic overview of all significant aspects and considerations of Environmental Professional In-Training for environmental managers, environmental engineers, water resources and wastewater treatment engineers, environmental compliance specialists, environmental impact assessment (EIA) specialists, waste management specialists, air quality and emissions specialists, spill response and environmental remediation specialists, sustainability and carbon management specialists, HSE officers and other technical staff.

Exam Eligibility & Structure

Exam Candidates shall have the following minimum prerequisites:-

- Be a college/university senior working towards, or be a graduate with, a bachelor's degree (or higher) in environmental, physical, earth, or natural science; engineering; or mathematics from an appropriately accredited college or university
- Have less than five years of qualifying environmental work experience. (Individuals with 5 or more years should skip the EPI step and apply for the QEP certification)
- Submit a completed application and 3 references from environmental professional
- Pass the GES exam
- Agree to adhere to the BGC Code of Ethics and to be governed by the BGC Ethics Case Procedures
- Pay fees on or before the due date

Eligibility	Professional Level Environmental Work	Minimum Education Required
EPI	Less than five years	College or University Senior: Enrollment in a bachelor's degree program in physical sciences, earth sciences, natural sciences, engineering, or mathematics
		Early-career professional: Bachelor's degree or equivalent in physical sciences, earth sciences, natural sciences, engineering, or mathematics
QEP	Eight years	Bachelor's degree in any discipline
	Five years	Bachelor's degree or equivalent in physical sciences, earth sciences, natural sciences, engineering, or mathematics

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Training Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Exam Fee

US\$ 435 per Delegate + VAT.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. John Burnip, EHS, SAC, STS, NEBOSH-ENV, NEBOSH-IGC, NEBOSH-IFC, NEBOSH-PSM, NEBOSH-IOG, TechIOSH, is a NEBOSH Approved Instructor and a Senior HSE Consultant with over 30 years of practical Offshore & Onshore experience within Oil, Gas, Refinery, Petrochemical and Nuclear industries. His wide experience covers NEBOSH International General Certificate in Occupational Health & Safety, NEBOSH National Certificate in Construction Health & Safety, NEBOSH Certificate in Process Safety Management, NEBOSH Environmental Management Certificate, NEBOSH Certificate in Fire Safety, NEBOSH International Oil & Gas Certificate, PHA, HAZOP, HAZCOM, HAZMAT, HAZID, Hazard & Risk Assessment, Emergency Response Procedures Behavioural Based Safety (BBS), Confined Space

Entry, Fall Protection, Emergency Response, H₂S, Safety Management System (ISO 45001), Accident/Incident Investigation System and Report PSM, Risk Assessment, SCE FMEA Failure Investigations, Site Management Safety Training (SMSTS), Occupational Health & Safety and Industrial Hygiene, Crisis Management & Damage Control in Oil & Gas Industry, Enhancing HSSE Safety Performance & Effectiveness, Overhead & Gantry Crane Safety, HSSE Principles & Practices Advanced, Lifting & Rigging Equipment Lifting Tackles Inspection License/Relicense, API 780 Security Risk Assessment Methodology for Petroleum & Petrochemical, Advanced Process Safety Management with PHA, Quantitative and Qualitative Risk Assessment, IADC/API Mobile Drilling Rig Inspections, Maintenance and Audits, H2s Training and Rescue with Respiratory Equipment, Job Safety Analysis (JSA), Work Permit & First Aid, Project HSE Management System, Health & Hygiene Inspection, PTW Control, Process Modules Fire & Gas Commissioning, MSDS, Ergonomics, Lockout/Tagout, Fire Safety & Protection, Spill Prevention & Control, Tower & Scaffold Inspection, Scaffolding Operations, Scaffolding Equipment, Bracket Scaffolds, Scaffolding Labelling, Pre-fab Scaffolding; Erecting, Maintaining & Dismantling Scaffolding in accordance with the British Standards Code of Practice 5973; Heavy Lifting operations, Cantilevered Hoists, Offshore Operations, Offshore Construction, Basic Offshore Safety Induction & Emergency Training (BOSIET), Onshore Fabrication & Offshore Pipelaying & Hook-Up, Crane Inspection, Crane Operations, Oilfield Startup & Operation, Steel Fabrication, OSHA, ISO 9001, ISO 14001, OHSAS 18001 and IMO (SOLAS) Regulations. Mr. Burnip has greatly contributed in upholding the highest possible levels of safety for numerous International Oil & Gas projects, Generation Systems & Platform Revamp, LPG & Gas Compression, Marine, Offshore and Power Plant Construction. Currently, he is the **HSE Advisor** of Solvay wherein he is responsible in planning and implementation of the corporate safety program (OSHA codes).

During Mr. Burnip's long career life, he had successfully carried out numerous projects in **Europe**, **North America**, **South America**, **Southeast Asia**, **Middle East** and the **North Sea**. He had worked for Delta Offshore Group, Solvay Asia Pacific, Likpin Dubai, SADRA/DOT, **ZADCO**, **McDermott** International (USA, Qatar, Egypt, India, Oman, Dubai and Abu Dhabi), **PDO**, **Shell**, **ARAMCO**, Salman Field, Leman Offshore Gas Field, GEC, Harland & Wolff PLC Belfast in North Ireland, Howard Doris – Kishorn in Scotland, **Westinghouse** Electric in Brazil and South Korea and **Chevron** Oil in Scotland as the **Commissioning Project Engineer**, **Project & Safety Engineer**, **Estimating Engineer**, **Senior Instrument Engineer**, **Instrument Field Engineer**, **Lead Instrument Engineer**, **Instrument Engineer**, **Engineer**, **Emergency Response Training Manager**, **HSE Advisor**, **HSE Instructor**, **HSE Supervisor**, **Instrumentation Supervisor**, **Instrumentation Specialist**, **Project Coordinator**, **Instrumentation Technician** and **Tank Farm Instrumentation Technician**.

Mr. Burnip has a Bachelor's degree in Business Studies from the Somerset University (UK). He is a Certified/Registered Tutor in NEBOSH Certificate in Environmental Management, NEBOSH International General Certificate, NEBOSH International Certificate in Fire Safety & Risk Management, NEBOSH Process Safety Management Certificate and NEBOSH International Oil & Gas Certificate; a Certified Safety Auditor (SAC); a Certified ISO 45001 Auditor; an Environmental Health and Safety Management Specialist on Fall Protection, Elevated Structures, Material Handling, Trenching & Excavations; a Welding Brazing Safety Technician; a Certified Safety Administrator (CSA) - General Industry; a Safety Manager/Trainer – General Industry; a Petroleum Safety Manager (PSM) - Drilling & Servicing; a Petroleum Safety Specialist (PSS) - Drilling & Servicing; a Safety Planning Specialist; a Safety Training Specialist; a Certified Instructor/Trainer; a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and further holds a Certificate in Mechanical Engineering Craft Practice from the City & Guilds of London Institute; a NEBOSH Level 3 Construction Certificate (UK); and holds a Cambridge Teaching Certificate. He is a well-regarded member of the National Association of Safety Professionals, the Association of Cost Engineers (UK), Institution of Occupational Safety & Health (TechlOSH) and an Associate Member of World Safety Organization. Further, he has conducted innumerable trainings, workshops and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	Introduction to Environmental Science Definition, Scope and Importance • Environmental Science versus Environmental Engineering • Historical Perspectives and Milestones • Key Environmental Laws and Regulations	
0930 - 0945	Break	
0945 - 1030	Ecosystems & Biodiversity Biotic and Abiotic Components • Energy Flow in Ecosystems (Food Chains, Webs and Pyramids) • Biodiversity and Conservation Strategies • Impact of Human Activities on Ecosystems	
1030 - 1130	Environmental Chemistry & Toxicology Basic Principles of Environmental Chemistry • Fate and Transport of Pollutants • Toxicity and Dose-Response Relationships • Common Environmental Contaminants and Their Effects	
1130 - 1230	Soil Science & Land Pollution Soil Composition and Classification • Sources of Land Pollution (Industrial, Agricultural, Municipal) • Contaminant Fate and Transport in Soil • Soil Remediation Techniques (Bioremediation, Phytoremediation, etc.)	
1230 - 1245	Break	
1245 - 1330	Environmental Microbiology Role of Microorganisms in the Environment • Biodegradation and Bioremediation Processes • Pathogens and Environmental Health Risks • Microbial Monitoring in Water and Soil	
1330 - 1420	Environmental Health & Risk Assessment Principles of Risk Assessment (Hazard Identification, Exposure Assessment) • Risk Communication Strategies • Environmental Epidemiology • Human Health Impacts of Environmental Contaminants	
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day One	

Day 2

-u, -		
0730 – 0930	Water Pollution & Treatment	
	Sources and Types of Water Pollution • Water Quality Parameters (pH, BOD,	
	COD, TDS, etc.) • Wastewater Treatment Processes (Primary, Secondary,	
	Tertiary) • Groundwater Contamination and Remediation	
0930 - 0945	Break	
0045 4020	Hydrology & Water Resource Management	
	Hydrologic Cycle and Water Balance • Surface Water and Groundwater	
0945 – 1030	Interaction • Water Scarcity and Conservation Strategies • Integrated Water	
	Resource Management (IWRM)	
	Air Pollution & Control Technologies	
1020 1120	Sources and Types of Air Pollutants • Atmospheric Chemistry and Air Quality	
1030 – 1130	Standards • Air Pollution Control Technologies (Scrubbers, Cyclones, Filters) •	
	Climate Change and Greenhouse Gases	
	Solid & Hazardous Waste Management	
1120 1220	Classification of Solid and Hazardous Waste • Waste Collection, Recycling, and	
1130 – 1230	Disposal Techniques • Landfills and Incineration Processes • Regulations	
	Governing Hazardous Waste (RCRA, CERCLA)	
1230 – 1245	Break	
	Noise Pollution & Control	
1245 - 1330	Sources of Environmental Noise • Noise Measurement and Standards • Health	
1243 - 1550	Effects of Noise Pollution • Noise Control Methods (Engineering,	
	Administrative, Personal)	
	Sustainable Development & Environmental Planning	
1330 – 1420	Principles of Sustainability • Environmental Impact Assessment (EIA) • Green	
	Infrastructure and Smart Cities • Circular Economy and Zero Waste Strategies	
	Recap	
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed	
	Tomorrow	
1430	Lunch & End of Day Two	

Day 3

		
0730 – 0930	Environmental Regulations & Standards Overview of Major Environmental Laws (Clean Air Act, Clean Water Act,	
	NEPA) • International Environmental Agreements (Paris Agreement, Kyoto Protocol) • Regulatory Agencies and Their Roles (EPA, OSHA, UNEP) •	
	Compliance and Enforcement Mechanisms	
0930 - 0945	Break	
0945 - 1030	Occupational & Environmental Safety	
	Workplace Environmental Hazards • OSHA Standards for Environmental	
	Protection • Personal Protective Equipment (PPE) for Environmental Hazards	
	Emergency Response Planning	
1030 - 1130	Hazardous Materials & Spill Prevention	
	Types of Hazardous Materials (Chemical, Biological, Radiological) • Hazardous	
	Material Storage and Handling • Spill Prevention, Control and Countermeasure	
	(SPCC) Plans • Emergency Spill Response and Cleanup	
1130 – 1230	Environmental Ethics & Social Responsibility	
	Ethical Considerations in Environmental Decision-Making • Corporate Social	
	Responsibility (CSR) and Sustainability • Environmental Justice and Equity •	
	Role of NGOs in Environmental Protection	

1230 - 1245	Break	
1245 – 1330	Environmental Monitoring & Sampling Techniques Air, Water and Soil Sampling Methods • Instrumentation and Analytical Techniques • Quality Assurance and Quality Control (QA/QC) in Sampling • Data Interpretation and Reporting	
1330 – 1420	Climate Change & Renewable Energy Causes and Impacts of Climate Change • Mitigation and Adaptation Strategies • Renewable Energy Technologies (Solar, Wind, Hydroelectric, Biomass) • Carbon Sequestration and Offsetting	
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day Three	

Day 4

Day 4	
0730 - 0930	Industrial Environmental Management Pollution Prevention Strategies • Best Available Technologies (BAT) for
	Industrial Processes • Environmental Management Systems (EMS) • ISO
	14001 Standards
0930 - 0945	Break
	Environmental Data Analysis & GIS Applications
0045 4000	GIS and Remote Sensing in Environmental Science • Data Visualization and
0945 – 1030	Mapping Techniques • Statistical Analysis for Environmental Data • Case
	Studies of GIS in Environmental Monitoring
	Water-Energy-Food Nexus
1030 - 1130	Interconnections Between Water, Energy and Food Systems • Sustainable
1030 - 1130	Resource Management • Climate Resilient Agricultural Practices • Case Studies
	of Integrated Resource Management
	Urban Environmental Issues
1130 – 1230	Urban Heat Islands and Air Quality • Sustainable Urban Transportation •
	Smart Cities and Green Buildings • Waste Management in Urban Areas
1230 – 1245	Break
	Ecotoxicology & Environmental Forensics
1245 - 1330	Ecotoxicological Effects of Contaminants • Bioaccumulation and
	Biomagnification • Environmental Damage Assessments • Forensic Techniques
	for Pollution Investigation Disaster Risk Reduction & Environmental Resilience
	Natural Disasters and Environmental Impacts • Disaster Preparedness and
1330 – 1420	Response Plans • Climate Resilience Strategies • Case Studies of Environmental
	Disaster Management
	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 – 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5

Duy 0		
0730 – 0930	Case Study: Industrial Pollution Control Real-World Pollution Challenges • Regulatory Approaches to Industrial Pollution • Best Practices in Pollution Control • Lessons Learned from Environmental Incidents	
0930 - 0945	Break	
0945 – 1100	Case Study: Water Quality & Management Water Contamination Case Studies • Treatment and Remediation Technologies • Policy Implications and Regulatory Response • Community-Based Water Management	
	Case Study: Air Pollution & Climate Change	
1100 – 1230	Industrial and Vehicular Emissions Case Studies • Public Health and Air Quality Issues • Mitigation Strategies for Air Pollution • International Cooperation on Climate Change	
1230 - 1245	Break	
1245 – 1315	Final Exam Preparation: Key Concepts Review Overview of Major Topics Covered • Sample Questions and Mock Exams • Exam Strategies and Time Management • Common Pitfalls and How to Avoid Them	
1315 – 1345	Professional Development & Career Pathways in Environmental Science Job Opportunities for Environmental Professionals • Certifications and Continued Education • Networking and Professional Associations • Ethical Considerations in Environmental Careers	
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

MOCK Exam

Upon the completion of the course, participants have to sit for a MOCK Examination similar to the exam of the Certification Body through Haward's Portal. Each participant will be given a username and password to log in Haward's Portal for the MOCK Exam during the 30 days following the course completion. Each participant has only one trial for the MOCK exam within this 30-day examination window. Hence, you have to prepare yourself very well before starting your MOCK exam as this exam is a simulation to the one of the Certification Body.

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

