

COURSE OVERVIEW IE0340

Custody Measurement, Fiscal Flow Metering, Meter Calibration, **Uncertainty Calculations & Loss Control of Petroleum Products**

O CEUS

(30 PDHs)

AWARI

Course Title

Custody Measurement, Fiscal Flow Metering, Meter Calibration, Uncertainty Calculations & Loss Control of Petroleum Products

Course Reference

IE0340

Course Date/Venue

April 06-10, 2025/Crowne Meeting Room, Crowne Plaza Al Khobar, Al Khobar, KSA

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

The course covers the concept of custody transfer, fiscal flow metering, meter calibration, uncertainty calculations and loss control of petroleum products. It is divided into 5 modules:-

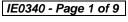
Module 1: Accuracy & Process Measurement

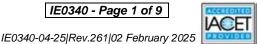
This module covers basic definitions, such as viscosity, repeatability, cavitation etc.; flow profiles and the effects on measurement; volumetric and mass flow rate.

Accuracy is important in terms of uncertainty of measurement; calibration; technical specifications and process requirements.

Flow Measurement including orifice plate and DP transmitter; multi-beam ultrasonic flowmeter; Coriolis mass meter; turbine meters amongst others.

Level Measurement, traditional methods such as capacitance and hydrostatic techniques are covered together with more modern technologies such as ultrasonic and radar measurements.





Module 2: Custody Transfer & Fiscal Flow Metering

This module examines the requirements of OIML R117; the subject of Custody Transfer in detail terms; flow calibration, dynamic and static; types of calibration rigs and calibration systems plus prover systems.

Module 3: Terminal & Pipeline Systems

Included in this module are, terminal tank gauging; Lease Automatic Custody Transfer (LACT); sediment and water considerations; operational issues and associated equipment. Pipeline considerations including paraffin content; pipeline pressure and process characteristics. Truck custody transfer, marine and aviation, on-loading and off loading etc.

Module 4: Monitoring and Controlling Losses

Loss control systems – an applied approach – model based system; leak detection / leak testing. Case studies of marine applications; measurement surveys and measurement reports. Multi-phase flowmetering and applications.

Module 5: API Standards and Flowmeter Selection

API measurement standards and volume correction tables; temperature compensation; SG versus API gravity; net volume calculation exercise. Guidelines for flowmeter selection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply proper knowledge and skills in custody measurement, fiscal flow metering, meter calibration, uncertainty calculations and loss control of petroleum products
- Identify the terminologies and classification of fluid mechanics and be aware of the accuracy requirements and specifications for custody measurement and loss control
- Discuss the different types, selection & installation of flow measurement and level measurement
- Aware of the basic overview of OIML Recommendation R117 including its requirements and operation
- Identify the various types of flow calibration and meter provers and discuss its application
- Explain in detail the different types, methods and techniques used in custody transfer and list the equipments used in its operation
- Discuss pipeline meter considerations employed for liquid petroleum products
- Employ leak detection for liquid petroleum products
- Gain in-depth knowledge on loss control system and illustrate proper monitoring and controlling production losses
- Discuss the API Standards as applied to basic custody measurement
- Identify the proper selection and cost consideration of flow meters

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of the major aspects of custody measurement, fiscal flow metering, meter calibration, uncertainty calculations and loss control of petroleum product for engineers and other technical staff who are in charge of custody measurement and loss control for petroleum products in oil/gas fields, gas plants, export facilities, refineries, marine terminals or bulk storage plants. Engineers, shift supervisors and other technical staff involved in meter proving and calibration will benefit from this course.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

* BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Barry Pretorius is a Senior Electrical & Instrumentation Engineer with almost 30 years of extensive experience within the Oil, Gas, Petrochemical, Refinery & Power industries. His expertise widely covers in the areas of Distributed Control System (DCS), DCS Operations & Techniques, Plant Control and Protection Systems, Process Control & Instrumentation, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Loss Control & Multiphase Flowmetering, Custody Measurement & Loss Control, Gas

Measurement, Cascade Control Loops, Split-Range Control Loops, Capacity Control & Other Advanced Control Schemes, Safety Instrumented Systems, Plant Automation Operations & Maintenance, Programmable Logic Controller (PLC), Siemens PLC Simatic S7-400/S7-300/S7-200, PLC & SCADA for Automation & Process Control, Artificial Intelligence, Allen Bradley PLC Programing and Hardware Trouble Shooting, Schneider SCADA System, Wonder Ware, Emerson, Honeywell, Honeywell Safety Manager PLC, Yokogawa, Advanced DCS Yokogawa, Endress & Hauser, Field Commissioning and Start up Testing Pre Operations, Fire & Gas Detection System, System Factory Acceptance Test (FAT), FactoryLink ECS, Modicon 484, Rockwell Automation, System Site Acceptance Test (SAT), SCADA HMI & PLC Control Logic, Cyber Security Practitioner, Cyber Security of Industrial Control System, IT Cyber Security Best Practices, Cybersecurity Fundamentals, Ethical Hacking & Penetration Testing, Cybersecurity Risk Management, Cybersecurity Threat Intelligence, OT Whitelisting for Better Industrial Control System Defense, NESA Standard and Compliance Workshop, OT, Cyber Attacks Awareness - Malware/Ransom Ware / Virus /Trojan/ Philsing, Information Security Manager, Security System Installation and Maintenance, Implementation, Systems Testing, Commissioning and Startup, Foxboro DCS & Triconics, SIS Systems, Advanced DC Drives, Motion Control, Hydraulics, Pneumatics and Control Systems Engineering, Electrical & Automation Control Systems, HV/MV Switchgear, LV & MV Switchgears & Circuit Breakers, High Voltage Electrical Safety, LV & HV Electrical System, HV Equipment Inspection & Maintenance, LV Distribution Switchgear & Equipment, Electrical Safety, Electrical Maintenance, Transformers, Medium & High Voltage Equipment, Circuit Breakers, Cable & Overhead Line Troubleshooting & Maintenance, Electrical Drawing & Schematics, Voltage Distribution, Power Distribution, Filters, Automation System, Electrical Variable Speed Drives, Power Systems, Power Generation, Diesel Generators, Power Stations, Uninterruptible Power Systems (UPS), Battery Chargers, AC & DC Transmission, CCTV Installation, Data & Fire Alarm System, Evacuation Systems and Electrical Motors & Variable Speed Drives, & Control of Electrical and Electronic devices.

During Mr. Pretorius's career life, he has gained his practical experience through several significant positions and dedication as the Technical Director, Automation System's Software Manager, Site Manager, Senior Lead Technical Analyst, Project Team Leader, Automation Team Leader, Automation System's Senior Project Engineer, Senior Project Engineer, Senior Project Engineer, Senior Instrumentation & Control Engineer, Electrical Engineer, Project Engineer, Pre-Operations Startup Engineer, PLC Specialist, Radio Technician, A.T.E Technician and Senior Instructor/Trainer from various companies like the ADNOC Sour Gas, Ras Al Khair Aluminum Smelter, Johnson Matthey Pty. Ltd, Craigcor Engineering, Unitronics South Africa Pty (Ltd), Bridgestone/Firestone South Africa Pty (Ltd) and South African Defense Force.

Mr. Pretorius's has a **Bachelor** of **Technology** in **Electrical Engineering** (**Heavy Current**). Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (**ILM**), received numerous awards from various institutions and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 06th of April 2025

Day 1:	Sunday, 06 th of April 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0900	Introduction Objectives of the Workshop • Workshop Content
0900 - 0930	Fluid Mechanics Terminology • Flow Profiles • The Measurement of Flow • Flowmeter Classification
0930 - 0945	Break
0945 - 1230	Accuracy Preview • Basic Requirements • Response • Uncertainty • Process Specification • Technical Specification • Accuracy Specifications
1230 – 1245	Break
1245 - 1415	Flow Measurement Industrial Flowmeter Types • Basic Flow Theory • Differential Pressure Flowmeters • Oscillatory Flow Measurement • Positive Displacement Meters • Turbine Meters • Magnetic Flowmeters • Ultrasonic Flowmeters • Doppler Flowmeters • Vortex Shedding • Coriolis Meters • Flowmeter Selection
1415 – 1420	Video Presentation Coriolis Mass Flowmeter
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2: Monday, 07th of April 2025

Day 2:	Monday, 07 th of April 2025
0730 - 0845	Level Measurement Main Types • Buoyancy Tape Systems • Hydrostatic Pressure • Ultrasonic Measurement • Radar Measurement • Vibration Switches • Electrical
	Measurement • Installation Considerations • Impact on the Control Loop • The Future
0045 0020	Video Presentation
0845 – 0930	Radar Level Measurement
0930 - 0945	Break
	OIML Recommendation R117
0945 - 1030	Introduction • Scope • General Requirements • Field of Operation • Accuracy
	Classes • Case Example • API MPMS Chapter 5.8
1030 – 1045	Video Presentation
	Ultrasonic Flowmeter
1045- 1115	Flow Calibration
	General • Trends in Calibration • Types of Calibration Test Rigs • In Situ
	Calibration • Turbine Meters • Review

1115– 1130	Video Presentation
	Flow Calibration
1130 – 1230	Meter Provers
	Definitions • Main Types • Maintenance • Problems
1230 - 1245	Break
1245 – 1420	Proving of a Turbine Meter
	Interactive Video Presentation
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 08th of April 2025
Dav 3:	i uesaav. us" of April 2023

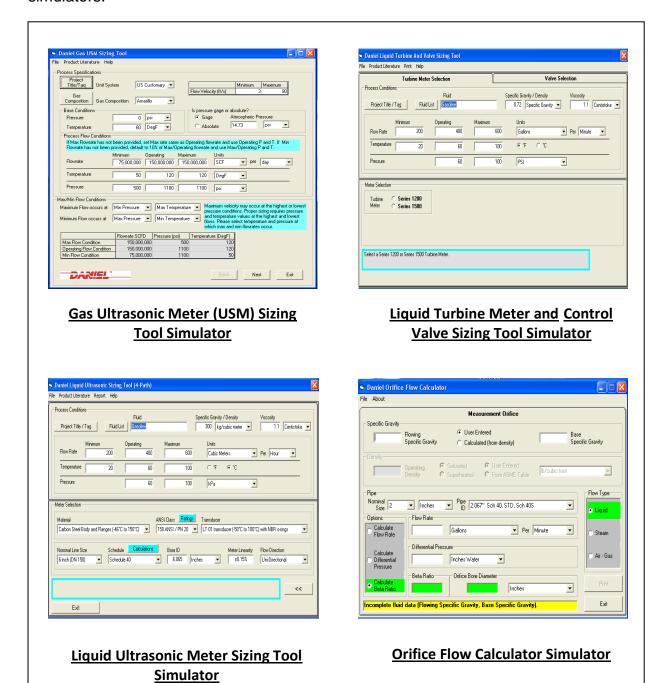
Day 3:	Tuesday, 08" of April 2025
0730 - 0915	Terminal Custody Transfer
	Introduction • Methods of Tank Calibration • Tank Gauging Techniques
	Tank Management Systems
0015 0020	Video Presentation
0915 – 0930	Tank Gauging System
0930 - 0945	Break
	Lease Automatic Custody Transfer
0945 - 1100	Introduction • System Requirements • Operation • Equipment •
	Conclusions • Appendix
	Truck Custody Transfer
1100 - 1230	Introduction • Truck Types • Typical Equipment • Other Considerations •
	Performance • New Developments
1230 – 1245	Break
1245 - 1420	Pipeline Meter Considerations
	Introduction • Flow in a Pipeline • Pipeline Installation Considerations • DP
	Transmitters • Multi-Port Averaging Pitot • Oscillatory Flow Measurement •
	Ultrasonic Flow Measurement • Mass Flow Measurement
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 09th of April 2025

Duy 7.	Weathersday, 05 Of April 2020
0730 - 0930	Leak Detection Introduction • API 1130 • A Theoretical or Practical Approach • Real Time
	Transient Model • Practical Example • Results • Conclusions
0930 - 0945	Break
0945-1100	Loss Control Systems Introduction • Custody Transfer Sampling • Case Studies • Examples of Delivery Malpractice
1100 - 1230	Monitoring & Controlling Production Losses Introduction ● General ● Types of Leaks ● Meter Proving ● Conclusions
1230 - 1245	Break

1245 – 1415	Multiphase Metering
	Introduction to Multi-phase Flowmetering • Multi-phase Flow • Measurement
	Principles
1415 – 1420	Video Presentation
	Multiphase Metering
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5:	Thursday, 10 th of April 2025
0730 - 0930	API Standards Introduction • API Gravity • Classification of Grades • Temperature Measurement • Measuring the Suspended S & W Content • Calculating Net Volume • Conclusions
0930 - 0945	Break
0930 - 0945	Flowmeter Selection & Costs Initial Considerations • Meter Selection • Process Considerations • Cost Considerations
0945 – 1100	Case Study - Proving of LPG Meters Introduction • Properties of LPG • Equipment • Benefits
1100 – 1230	Addendums Ultrasonic Gas Flowmeter • Custody Transfer Contracts • Other Subjects
1230 – 1245	Break
1245 - 1345	Review & Wrap-up Session
1345 – 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Gas Ultrasonic Meter Sizing Tool", "Liquid Turbine Meter and Control Valve Sizing Tool", "Liquid Ultrasonic Meter Sizing Tool" and "Orifice Flow Calculator" simulators.

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

