

COURSE OVERVIEW RE0978 Condition Monitoring and Predictive Maintenance

CEUS

Course Title

Condition Monitoring and Predictive Maintenance

Course Reference

RE0978

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	June 30-Jul 04, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
2	August 04-08, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
3	September 07-11, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE
5	November 23-27,. 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Condition Monitoring and Predictive Maintenance. It covers the reactive, preventive and predictive maintenance and the benefits and limitations of each strategy; the basics of condition monitoring (CM), asset criticality and risk-based maintenance; the condition monitoring technologies, basics of failure mechanisms, data acquisition and monitoring system architecture and the principles of vibration analysis; and the vibration monitoring techniques, vibration data interpretation and condition-based maintenance (CBM) planning; and the infrared thermography principles, applications of thermography in refineries and lubrication and oil analysis.

During this interactive course, participants will learn the tribology and wear mechanism analysis, ultrasonic testing techniques and integrating multiple techniques; the predictive maintenance tools and platforms. reliability-centered maintenance (RCM) and root cause failure analysis (RCFA); the failure prediction techniques, condition monitoring dashboards and KPIs; the digital twins and smart maintenance systems, condition monitoring program and troubleshooting common issues; the CM and PdM in turnaround and shutdown planning; the bad actors for maintenance and asset health audits before startup; the risk-based inspection during turnaround and internal audits for CM programs; and the KPI monitoring, feedback loops and annual review of PdM strategies.

RE0978 -Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on condition monitoring and predictive maintenance
- Differentiate reactive, preventive and predictive maintenance and discuss the benefits and limitations of each strategy
- Explain the basics of condition monitoring (CM) and carryout asset criticality and riskbased maintenance
- Apply condition monitoring technologies covering vibration analysis, thermography, ultrasonic testing and lubricant analysis
- Discuss basics of failure mechanisms, data acquisition and monitoring system architecture and the principles of vibration analysis
- Carryout vibration monitoring techniques, vibration data interpretation and conditionbased maintenance (CBM) planning
- Discuss infrared thermography principles, applications of thermography in refineries and lubrication and oil analysis
- Employ tribology and wear mechanism analysis, ultrasonic testing techniques and integrating multiple techniques
- Apply predictive maintenance tools and platforms, reliability-centered maintenance (RCM) and root cause failure analysis (RCFA)
- Carryout failure prediction techniques, condition monitoring dashboards and KPIs
- Discuss digital twins and smart maintenance systems, develop a condition monitoring program and troubleshoot common issues
- Apply CM and PdM in turnaround and shutdown planning, identify bad actors for maintenance and implement asset health audits before startup and risk-based inspection during turnaround
- Perform internal audits for CM programs and apply KPI monitoring and feedback loops and annual review of PdM strategies

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of condition monitoring and predictive maintenance for plant managers, operations managers, supply chain and logistics managers, maintenance engineers/technicians, reliability engineers, asset management professionals, industrial automation engineers, instrumentation and control engineers, data analysts/data scientists, quality assurance/quality control engineers, health, safety, and environmental (HSE) managers, consultants and service providers, vibration analysts, IT professionals, manufacturing engineers, maintenance planners and schedulers, executives and decision-makers.

RE0978 -Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

- BAC
 - British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED PROVIDER

The International Accreditors for Continuing Education and <u>Training (IACET - USA)</u>

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

RE0978 -Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a Senior Process & Mechanical Maintenance Engineer with over 25 years of extensive experience within the Oil & Gas. Refinerv. Petrochemical & Power industries. His expertise widely covers in the areas of Maintenance Planning, Maintenance & Cataloguing, Reliability Management, Material Equipment Root Cause Failure Analysis (RCFA), Maintenance. Rotating Machinery Troubleshooting, Maintenance Auditing & Benchmarking, Condition Monitoring Techniques. Machinerv Lubrication Technology, Lubricant Oil & Grease Testing & Analysis, Crude Oil

Storage & Management, Ammonia Manufacturing & Process Troubleshooting, Crude **Oil** Distillation, **Distillation** Operation and Troubleshooting, **Ammonia Storage & Loading** Systems, Fertilizer Storage Management (Ammonia & Urea), Sulphur Recovery, Nitrogen Fertilizer Production, Refining Process & Petroleum Products, Safe Refinery Operations, Hydrotreating & Hydro-processing, Fractionation, Process Plant Operations, Storage Tanks Operations & Measurements, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Performance, Process Troubleshooting Pressure Vessel Operation, Process Equipment Performance & Techniques. Troubleshooting, Plant Startup & Shutdown and Flare & Relief System. Further, he is also well-versed in Compressors & Turbines Maintenance, Heat Exchanger Overhaul & Testing Techniques, Balancing of Rotating Machinery (BRM), Pipe Stress Analysis, Valves & Actuators Technology, Control Valve Engineering, Tank Design, Material Cataloguing, Specifications, Handling & Storage, Steam Trap Design, Operation, Maintenance & Troubleshooting, Steam Trapping & Control, Column, Pump & Exchangers, Troubleshooting & Design, Detailed Engineering Drawings, Codes & Standards, Production Optimization, Permit to Work (PTW), Project Engineering, Data Analysis, Process Hazard Analysis (PHA), HAZOP Study, Sampling & Analysis, Training Analysis, Job Analysis Techniques, Storage & Handling of Toxic Chemicals & Hazardous Materials, Hazardous Material Classification & Storage/Disposal, Dangerous Goods, Environmental Management System (EMS), Supply Chain, Purchasing, Procurement, Logistics Management & Transport & Warehousing & Inventory, Risk Monitoring Authorized Gas Tester (AGT), Confined Space Entry (CSE), Personal Protective Equipment (PPE), Fire & Gas, First Aid and Occupational Health & Safety.

During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician, Senior Lecturer and Senior Consultant/Trainer for various companies such as the Sasol Ltd., Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a Bachelor's degree in Chemical Engineering and a Diploma in Mechanical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and has delivered various trainings, workshops, seminars, courses and conferences internationally.

RE0978 -Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 0830	DRF_TFST	
0015 - 0050	1 KL-1L51	
0830 - 0930	Reactive Versus Preventive Versus Predictive • Evolution of Maintenance Philosophies • Benefits and Limitations of Each Strategy • Integration with Asset Management Systems	
0930 - 0945	Break	
0945 - 1045	Basics of Condition Monitoring (CM) Definition and Purpose of CM • CM versus Predictive Maintenance (PdM) • Role of CM in Reliability and Availability • Importance of Data-Driven Maintenance	
1045 - 1130	Asset Criticality & Risk-Based Maintenance Defining Asset Criticality • Failure Mode Effects and Criticality Analysis (FMECA) • Risk Ranking and Prioritization • Linking CM to High-Risk Equipment	
1130 – 1230	Condition Monitoring Technologies Overview Vibration Analysis • Thermography • Ultrasonic Testing • Lubricant Analysis	
1230 - 1245	Break	
1245 - 1330	Basics of Failure Mechanisms Mechanical Fatigue and Wear • Thermal Degradation • Electrical Insulation Breakdown • Corrosion and Erosion Effects	
1330 - 1420	Data Acquisition & Monitoring System Architecture Sensors and Data Loggers • SCADA and DCS Integration • Online versus Offline Monitoring Systems • Data Storage and Transmission Protocols	
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day One	

RE0978 -Page 5 of 8 RE0978-06-25 |Rev.00/16 April 2025

Day 2

0730 - 0830	Principles of Vibration Analysis	
	Types of Vibrations: Axial, Radial, Torsional • Frequency Domain Analysis	
	(FFT) • Amplitude, Phase, and Waveform Interpretation • Resonance and	
	Critical Speeds	
	Vibration Monitoring Techniques	
0830 - 0930	Velocity, Acceleration, Displacement • Portable and Fixed Sensors • Route-	
	Based versus Continuous Monitoring • ISO 10816 and Alarm Thresholds	
0930 - 0945	Break	
	Vibration Data Interpretation	
0945 – 1100	Bearing Faults Detection • Unbalance and Misalignment • Looseness and Soft	
	Foot • Gear Mesh Issues	
1100 - 1230	Case Studies in Refinery Rotating Equipment	
1100 - 1250	Centrifugal Pumps • Compressors • Fans and Blowers • Motors and Gearboxes	
1230 – 1245	Break	
	Condition-Based Maintenance (CBM) Planning	
1245 – 1330	Decision-Making Based on Vibration Data • Maintenance Scheduling Criteria	
	Trend Monitoring • Alarm and Warning Level Setting	
	Vibration Monitoring Tools & Software	
1330 – 1420	Overview of Handheld Devices • Smart Sensor Integration • Data Trending	
	Tools • Reporting and Diagnostics Tools	
	Recap	
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Two	

Day 3

Infrared Thermography Principles	
Basics of Heat Radiation • IR Camera Types and Resolutions • Emissivity and	
Reflectivity Factors • Image Interpretation Techniques	
Applications of Thermography in Refineries	
<i>Electrical Panels and Switchgear</i> • <i>Steam Traps and Piping Systems</i> • <i>Furnace</i>	
<i>Lining and Refractory Monitoring</i> • <i>Hotspot Detection in Rotating Equipment</i>	
Break	
Lubrication & Oil Analysis	
Importance of Lubricant Condition Monitoring • Types of Tests: Viscosity,	
TBN, TAN • Contaminants and Wear Particles • Oil Sampling Best Practices	
Tribology & Wear Mechanism Analysis	
Sliding, Abrasive, and Adhesive Wear • Metal Fatigue and Spalling •	
<i>Ferrography and Spectroscopy</i> • <i>Root Cause Analysis of Lubrication Issues</i>	
Break	
Ultrasonic Testing Techniques	
Working Principle and Frequency Range • Airborne and Contact Ultrasound •	
Leak Detection and Steam Trap Monitoring • Bearing and Valve Condition	
Assessment	

RE0978 -Page 6 of 8

1330 - 1420	<i>Integrating Multiple Techniques</i> Multi-Parameter Diagnostics • Cross-Verification Between Methods • Decision-Making and Confidence Levels • CMMS Integration and Automated Alerts	
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day Three	

Day 4

0730 - 0830	Predictive Maintenance Tools & Platforms
	Overview of AI/ML in Predictive Maintenance • Predictive Modeling and
	Forecasting • Key Parameters and KPI Tracking • Integration with IoT Sensors
	Reliability-Centered Maintenance (RCM)
0830 - 0930	Core Principles and Methodology • Functional Failure Analysis • Decision
	Logic for Maintenance Tasks • Practical Application in Refinery Context
0930 - 0945	Break
	Root Cause Failure Analysis (RCFA)
0945 – 1100	Step-by-Step RCA Methodology • Tools: 5 Whys, Fishbone Diagram, Fault
	Tree • RCA Documentation and Reporting • Continuous Improvement Loop
	Failure Prediction Techniques
1100 – 1230	Mean Time Between Failures (MTBF) • Weibull and Statistical Analysis •
	Remaining Useful Life (RUL) Estimation • Maintenance Interval Optimization
1230 – 1245	Break
	Condition Monitoring Dashboards & KPIs
1245 1330	Setting Up Performance Dashboards • Visualizing Vibration and Thermal
1245 - 1550	Trends • Alert Management and Escalation Protocols • Performance
	Benchmarking
	Digital Twins & Smart Maintenance Systems
1220 1420	Concept and Architecture of Digital Twins • Digital Replicas of Critical
1550 - 1420	Refinery Assets • Real-Time Simulation for Failure Prediction • Use of Digital
	Twins in Predictive Workflows
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

0730 - 0830	Developing a Condition Monitoring Program	
	Implementation Roadmap • Resource Planning and Training • Integration	
	with Existing Systems • Stakeholder Engagement and Buy-In	
0820 0020	Troubleshooting Common Issues	
	Sensor Placement and Wiring Errors • Data Quality and Noise Reduction •	
0850 - 0950	Communication Errors in Online Systems • Misinterpretation of Diagnostic	
	Results	
0930 - 0945	Break	
0945 – 1100	CM & PdM in Turnaround & Shutdown Planning	
	Role in Pre-Shutdown Inspections • Identifying Bad Actors for Maintenance •	
	Asset Health Audits Before Startup • Risk-Based Inspection During	
	Turnaround	

RE0978 -Page 7 of 8

RE0978-06-25 |Rev.00/16 April 2025

UKAS

ilm

IACET

1100 – 1230	Refinery-Specific Applications & Case Studies	
	Case Study: Pump Bearing Failure Detection • Case Study: Electrical Panel	
	Overheating • Case Study: Gearbox Oil Degradation • Case Study: Compressor	
	Unbalance Resolution	
1230 - 1245	Break	
1245 - 1345	Auditing & Continuous Improvement	
	Internal Audits for CM Programs • KPI Monitoring and Feedback Loops •	
	Lessons Learned and Corrective Actions • Annual Review of PdM Strategies	
1345 - 1400	Course Conclusion	
	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>	
	Course Topics that were Covered During the Course	
1400 - 1415	POST-TEST	
1415 - 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "iLearnVibration".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

RE0978 -Page 8 of 8

