

COURSE OVERVIEW RE0805-9D Vibration Analyst Category: Category IV (Mobius Institute)

Course Title

Vibration Analyst Category: Category IV
(Mobius Institute)

Course Date/Venue

Session 1: April 12-16, 2026/Tamra Meeting Room, Al Baandar Rotana Creek, Dubai, UAE

Session 2: August 02-06, 2026/Crowne Meeting Room, Crowne Plaza Al Khobar, an IHG Hotel, Al Khobar, KSA

Course Reference

RE0805-9D

Course Duration/Credits

Nine days/6.4 CEUs/64 PDHs

(4 days: Part 1 – Online Component, plus
5 days: Part 2 – Classroom Component)

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Vibration analysis is defined as a process for measuring the vibration levels and frequencies of machinery and then using that information to analyze how healthy the machines and their components are. While the inner-workings and formulas used to calculate various forms of vibration can get complicated, it all starts with using an accelerometer to measure vibration. Anytime a piece of machinery is running, it is making vibrations. An accelerometer attached to the machine generates a voltage signal that corresponds to the amount of vibration and the frequency of vibration the machine is producing, usually how many times per second or minute the vibration occurs.

This course is designed to provide participants with a detailed and up-to-date overview of ISO Vibration Level IV in accordance with ISO 18436. It covers the principles of vibration, data acquisition and signal processing; the condition monitoring, fault analysis and corrective action; the equipment testing and diagnostics, reference standards and reporting and documentation; and the fault severity determination and rotor/bearing dynamics.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the next Vibration Analyst exam and have enough knowledge and skills to pass such exam in order to get certified as “*Vibration Analyst: Category IV*” in accordance with ISO 18436 standards from the Mobius Institute
- Discuss the vectors, modulation, phase, natural frequency, resonance and critical speeds
- Explain force, response, damping, stiffness, instabilities and non-linear systems
- Determine instrumentation, dynamic range and signal-to-noise ratio and apply test planning and procedures
- Carryout RMS/peak detection, analogue/digital conversion and sampling and FFT computation
- Discuss low pass, high pass, band pass and tracking filters including anti-aliasing, bandwidth, resolution and noise reduction
- Recognize averaging: linear, synchronous time, exponential, dynamic range, signal-to-noise ratio and spectral maps
- Illustrate monitoring programme design, oil analysis, infrared thermography, motor current analysis and acoustic emission
- Apply spectrum and time waveform analysis, phase and transient analysis as well as orbit and shaft centreline analysis
- Identify electric motor defects, flow induced vibration, aerodynamics, liquids, resonance, critical speeds and turbomachinery
- Carryout field balancing, flow control, isolation and damping and resonance control
- Employ impact testing, forced response testing, transient analysis, damping evaluation and modal analysis
- Review reference standards covering ISO, IEC and relevant national standards
- Discuss vibration diagnostics reports and apply spectrum analysis, time waveform analysis, orbit analysis, severity charts, graphs and formula
- Describe rotor/bearing dynamics covering rotor characteristics, bearing characteristics and rotor balancing

Who Should Attend

This course provides an overview of all significant aspects and considerations of ISO Vibration Analysis Category IV for those who are involved in the measurement, analysis, dynamics and balancing of turbomachinery. This includes maintenance, reliability, rotating equipment, process, control and instrumentation personnel, engineers, maintenance supervisors, mechanical foremen, specialists and other technical staff.

Exam Eligibility & Structure

Exam candidates shall have the following minimum prerequisites:-

- Successfully completed two (2) or more years of mechanical technology or mechanical engineering at an accredited college, university or technical school
- Should be familiar with current VA technology
- Minimum 60 months of Vibration Analysis experience
- Must hold a Vibration Analyst Category III

Course Certificate(s)

(1) Internationally recognized certificates will be issued to all participants of the course.

Certificate of Completion

Is hereby awarded to

Aly El Bendary

MI TMS ID 00911219

for successful completion of the training course

Vibration Analysis Category IV

Course Dates: 23 - 26 December 2019

This training course was provided by Mobius Institute and follows ISO 18436-2 and 18436-3 standards and its completion provides 3.5 Continuing Education Unit (CEU) credits.

Salah Attia
Instructor for PrimeGear Training Academy

(2) Mobius Institute will certify the participants who will pass the examination for **Vibration Analyst: Category IV**.

(3) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.

** Haward Technology * CEUs * Haward Technology **

Haward Technology Middle East
Continuing Professional Development (HTME-CPD)

CEUs
Page 1 of 1

CEU Official Transcript of Records

TOR Issuance Date: 22-Aug-19

HTME No.: 8667-2014-9020-2547

Participant Name: Ismail Al Hammadi

Program Ref.	Program Title	Program Date	No. of Contact Hours	CEU's
RE0805-IH	ISO Vibration Certification Level IV (CAT IV-ISO 18436) Training, Exam and Certification	August 18-22, 2019	32.5	3.25

Total No. of CEU's Earned as of TOR Issuance Date **3.25**

TRUE COPY

Maricel De Guzman
Academic Director

Haward Technology has been approved as an Authorized Provider by the International Association for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this approval, Haward Technology has demonstrated that it complies with the ANSI/IACET 1-2013 Standard which is widely recognized as the standard of good practice internationally. As a result of their Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for programs that qualify under the ANSI/IACET 1-2013 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Association for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology is accredited by

P.O. Box 26070, Abu Dhabi, United Arab Emirates | Tel.: +971 2 3091 714 | Fax: +971 2 3091 716 | E-mail: info@haward.org | Website: www.haward.org

** Haward Technology * CEUs * Haward Technology * CEUs * Haward Technology * CEUs * Haward Technology **

Certificate Accreditations

Haward's certificates are accredited by the following international accreditation organizations: -

-

Mobius Institute Board of Certification (MIBoC) Scheme

Mobius Institute Board of Certification (**MIBoC**) is ISO/IEC 17024 and ISO 18436-1 accredited and provides globally recognised certification for Vibration Analysis, Infrared Thermography, Ultrasound and Asset Reliability. MIBoC is an impartial and independent entity that is directed by scheme and technical committees to ensure that its certification meets or exceeds the requirements defined by the applicable ISO standards. Haward Technology is a partner of various Mobius Training Partners.

-

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **6.4 CEUs** (Continuing Education Units) or **64 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Khaled Ibrahim, BSc, APR-E, ARP-A, VA, is a **Senior Mechanical Engineer** and **Asset Management Specialist** with over extensive years of industrial experience within the **Oil & Gas**, **Refinery** and **Petrochemical** industries. His expertise widely covers in the areas of **Condition Monitoring & Asset Management**, **Asset Reliability & Lubrication**, **RBI Assessment**, **AV & FIV**, **Vibration Techniques**, **Advanced Vibration Analysis**, **Acoustic & Flow Induced Vibration**, **Thermal Imaging** Technology, **Precision Machinery Alignment**, **Laser Alignment**, **Machinery Balancing**, **Criticality Assessment**, **FMEA**, **Root Cause Analysis**, **Defect Elimination**, **Ultrasound Technology**, **Design Engineering System**, **Protection & Monitoring System**, **Static Equipment**, **Static Risk Assessment**, **Baseline Survey Analysis**, **Machinery Maintenance**, **Shutdown & Turnaround**, **Thermal Imaging**, **Oil Testing & Analysis**, **Borescope Inspection**, **Rockwell Automation**, **Azima**, **IT Concept**, **Metric Vibration**, **CTC Sensors**, **Artesis MCSA**, **Pipeline Corrosion Loops**, **Offshore Safety Induction & Emergency**, **Energy & Waste Management** and **BOSIET/OPITO**. Currently, he is the **Business Development Manager** wherein he is in-charge of developing market and spreading awareness of asset management solutions in MENAT region.

During his career life, Mr. Khaled has gained his practical and field experience through his various significant positions and dedication as the **Asset Manager**, **Technical Services Manager**, **Senior Condition Monitoring Consultant**, **Condition Monitoring Team Leader**, **Senior Rotating Engineer** and **Senior Instructor/Trainer** for numerous multi-billion companies including the UDPS, KMT, Veolia, PROACT Engineering, PETROFAC and PETROMAINT.

Mr. Khaled has a **Bachelor's** degree in **Power Mechanical Engineering**. Further, he is a **Certified Asset Reliability Practitioner ARP-E & ARP I&II** from the **Mobius Institute**, Certified Level 1 Machinery Lubrication Analyst (**MLA-1**), Certified **ISO Vibration Level IV** Global Instructor, Certified Level 1 Ultrasound, Certified Reliability Leader (**CRL**), Certified Basic Offshore Safety Induction & Emergency **BOSIET** and Certified **ISO ARP-A** Global Instructor. He has further delivered numerous trainings, courses, seminars, conferences and workshops internationally.

Training Methodology

This interactive training course includes the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Workshops & Work Presentations

20% Case Studies & Practical Exercises

30% Videos, Software & Simulators

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 17,750 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	<i>Registration & Coffee</i>
0800 – 0815	<i>Welcome & Introduction</i>
0815 – 0830	PRE-TEST
0830 – 0930	Principles of Vibration: Vectors, Modulation
0930 – 0945	<i>Break</i>
0945 – 1100	Principles of Vibration: Phase
1100 – 1200	Principles of Vibration: Natural Frequency, Resonance, Critical Speeds
1200 – 1300	<i>Lunch</i>
1300 – 1400	Principles of Vibration: Force, Response, Damping, Stiffness
1400 – 1500	Principles of Vibration: Instabilities, Non-Linear Systems
1500 – 1515	<i>Break</i>
1515 – 1600	Data Acquisition: Instrumentation
1600 – 1650	Data Acquisition: Dynamic Range, Signal-to-Noise Ratio
1650 – 1700	Recap
1700	<i>End of Day One</i>

Day 2

0730 – 0830	Data Acquisition: Test Planning
0830 – 0930	Data Acquisition: Test Procedures
0930 – 0945	<i>Break</i>
0945 – 1100	Signal Processing: R.m.s./Peak Detection
1100 – 1200	Signal Processing: Analogue/Digital Conversion
1200 – 1300	<i>Lunch</i>
1300 – 1400	Signal Processing: Analogue Sampling, Digital Sampling
1400 – 1500	Signal Processing: FFT Computation
1500 – 1515	<i>Break</i>
1515 – 1600	Signal Processing: Filters: Low Pass, High Pass, Band Pass, Tracking
1600 – 1650	Signal Processing: Anti-aliasing
1650 – 1700	Recap
1700	<i>End of Day Two</i>

Day 3

0730 – 0830	Signal Processing: Bandwidth, Resolution
0830 – 0930	Signal Processing: Noise Reduction
0930 – 0945	<i>Break</i>
0945 – 1100	Signal Processing: Averaging: Linear, Synchronous Time, Exponential

1100 – 1200	Signal Processing: Dynamic Range
1200 – 1300	Lunch
1300 – 1400	Signal Processing: Signal-to-Noise Ratio
1400 – 1500	Signal Processing: Spectral Maps
1500 – 1515	Break
1515 – 1600	Condition Monitoring: Monitoring Programme Design
1600 – 1650	Condition Monitoring: Alternative Technologies - Oil Analysis, Infrared Thermography, Motor Current Analysis and Acoustic Emission
1650 – 1700	Recap
1700	End of Day Three

Day 4

0730 – 0930	Fault Analysis: Spectrum Analysis, Harmonics, Sidebands
0930 – 0945	Break
0945 – 1100	Fault Analysis: Time Waveform Analysis
1100 – 1200	Fault Analysis: Phase Analysis
1200 – 1300	Lunch
1300 – 1400	Fault Analysis: Transient Analysis
1400 – 1500	Fault Analysis: Orbit Analysis
1500 – 1515	Break
1515 – 1600	Fault Analysis: Shaft Centreline Analysis
1600 – 1650	Fault Analysis: Enveloping
1650 – 1700	Recap
1700	End of Day Four

Day 5

0730 – 0930	Fault Analysis: Rubs, Instabilities
0930 – 0945	Break
0945 – 1100	Fault Analysis: Electric Motor Defects
1100 – 1200	Fault Analysis: Flow Induced Vibration, Aerodynamics & Liquids
1200 – 1300	Lunch
1300 – 1400	Fault Analysis: Resonance & Critical Speeds
1400 – 1500	Fault Analysis: Turbomachinery
1500 – 1515	Break
1515 – 1600	Corrective Action: Field Balancing
1600 – 1650	Corrective Action: Flow Control
1650 – 1700	Recap
1700	End of Day Five

Day 6

0730 – 0930	Corrective Action: Isolation & Damping
0930 – 0945	Break
0945 – 1100	Corrective Action: Resonance Control
1100 – 1200	Equipment Testing & Diagnostics: Impact Testing
1200 – 1300	Lunch
1300 – 1400	Equipment Testing & Diagnostics: Forced Response Testing
1400 – 1500	Equipment Testing & Diagnostics: Transient Analysis

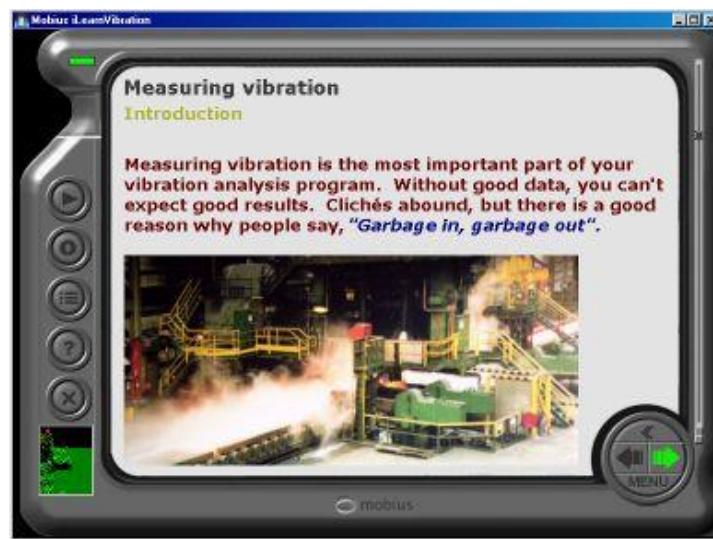
1500 – 1515	Break
1515 – 1600	Equipment Testing & Diagnostics: Transfer Functions
1600 – 1650	Equipment Testing & Diagnostics: Damping Evaluation
1650 – 1700	Recap
1700	End of Day Six

Day 7

0730 – 0930	Equipment Testing & Diagnostics: Cross Channel Phase, Coherence
0930 – 0945	Break
0945 – 1100	Equipment Testing & Diagnostics: Operating Deflection Shapes
1100 – 1200	Equipment Testing & Diagnostics: Modal Analysis
1200 – 1300	Lunch
1300 – 1400	Equipment Testing & Diagnostics: Torsional Vibration
1400 – 1500	Reference Standards: ISO
1500 – 1515	Break
1515 – 1600	Reference Standards: IEC
1600 – 1650	Reference Standards: Relevant National Standards
1650 – 1700	Recap
1700	End of Day Seven

Day 8

0730 – 0930	Reporting & Documentation: Vibration Diagnostics Reports
0930 – 0945	Break
0945 – 1100	Fault Severity Determination: Spectrum Analysis
1100 – 1200	Fault Severity Determination: Time Waveform Analysis, Orbit Analysis
1200 – 1300	Lunch
1300 – 1400	Fault Severity Determination: Severity Charts, Graphs & Formula
1400 – 1500	Rotor/Bearing Dynamics: Rotor Characteristics
1500 – 1515	Break
1515 – 1600	Rotor/Bearing Dynamics: Bearing Characteristics
1600 – 1650	Rotor/Bearing Dynamics: Rotor Balancing
1650 – 1700	Recap
1700	End of Day Eight


Day 9

0730 – 0945	Review & MOCK EXAM
0945 – 1000	Break
1000 – 1500	Mobius COMPETENCY EXAM (5 hrs)
1500 – 1600	Lunch
1600 – 1615	Course Conclusion
1615 – 1630	Presentation of Course Certificates
1630	End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator “iLearnVibration”.

iLearnVibration Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org