

COURSE OVERVIEW EE1106 Transmission System Engineering

CEUS

30 PDHs)

AWAR

<u>Course Title</u> Transmission System Engineering

Course Date/Venue

Session 1: August 11-15, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE Session 2: December 15-19, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Reference

EE1106

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Transmission System Engineering. It covers the role of electrical transmission systems in power system network; the types of transmission systems, transmission system components, voltage levels and grid topologies; the transmission system standards and regulations and the basic electrical calculation for transmission, line route selection and conductor selection and sizing; the types of towers. wind and loading considerations, structural materials and foundation design principles; and the insulation and clearance design, grounding and shielding and thermal rating and line ampacity.

Further, the course will also discuss the substation layout and types, power transformers in transmission systems, switchgear and circuit breakers and protection and control systems; the instrument transformers (CTs and VT), auxiliary and DC systems and power flow in transmission lines; the reactive power and voltage control, system stability analysis, economic dispatch consideration and minimization techniques; and the load dispatch and grid control, smart grids and transmission automation and transmission line inspection and maintenance.

EE1106- Page 1 of 10

EE1106-08-25|Rev.00|13 April 2025

During this interactive course, participants will learn the substation maintenance practices, commissioning and field testing and asset management and lifecycle optimization; the renewable energy integration into transmission and high-temperature superconductors (HTS); and the HVDC upgrades and MMC converters, digital substations and cybersecurity in transmission systems.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on transmission system engineering
- Discuss the role of electrical transmission systems in power system network and identify the types of transmission systems, transmission system components, voltage levels and grid topologies
- Review transmission system standards and regulations and apply basic electrical calculation for transmission, line route selection and conductor selection and sizing
- Recognize the types of towers, wind and loading considerations, structural materials and foundation design principles
- Describe insulation and clearance design, grounding and shielding as well as thermal rating and line ampacity
- Determine substation layout and types, power transformers in transmission systems, switchgear and circuit breakers and protection and control systems
- Recognize instrument transformers (CTs and VT), auxiliary and DC systems and power flow in transmission lines
- Carryout reactive power and voltage control, system stability analysis, economic dispatch consideration and minimization techniques
- Apply load dispatch and grid control, smart grids and transmission automation and transmission line inspection and maintenance
- Employ substation maintenance practices, commissioning and field testing and asset management and lifecycle optimization
- Apply renewable energy integration into transmission and discuss high-temperature superconductors (HTS), HVDC upgrades and MMC converters, digital substations and cybersecurity in transmission systems

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of transmission system engineering for project engineers and managers, electrical engineers, power system planners and analysts, utility company staff, transmission system operators (TSOs), consultants in power and energy sector, renewable energy engineers and other technical staff.

EE1106- Page 2 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ACCREDITED
The International Accreditors for Continuing Education and Training
(IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE1106- Page 3 of 10

EE1106-08-25|Rev.00|13 April 2025

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ken Steel is a Senior Electrical & Instrumentation Engineer with over 30 years of extensive experience. His expertise widely covers Electrical Motors Testing, Heat Tracing & Insulation Installation & Testing, HV Terminations, High & Low Voltages on Overhead Cranes, HV/MV Cable Splicing, Cable & Over Head Power Line, HV/MV Switchgear, HV Cable Design, Medium & High Voltage Equipment, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System, HV Equipment Inspection &

Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold HV/LV Equipment, LV & HV Electrical System, Cable Splicing & Shrink Joints, Termination, High Voltage Electrical Safety, LV, MV & HV Cable Installations & Properties, LV Substation, MV & LV Cable, UPS Systems, MV & LV Direct on Line Motor Drives, MV & LV VSD Motor Drives, MV & LV Soft Starter Motor Drives, LV Two Speed Motor Drives, Underground Transformer Oil Containment Tank, Electrical & Instrumentation Construction Installation, 1500KW, 1000KW, 1752KW Diesel Power Plant Installation, 110KV Overhead Line, 110KV Outdoor Switchgear, 110KV/10KV 6500KVA Transformer, Transformer Substation, 1600KVA 10KV/0.4KV & 2 Off 1000KVA Diesel Generators, 1600KVA 10KV/0.4KV & 1650KVA Diesel Generator, 110KV/35KV/10KV Substation, 110KV/10KV Transformers, 110KV & 2 Off 6KV Overhead Lines, 34.5KV,13.8KV ,4.16KV & 480V Switchgear, 4.16KV & 480V MCC, Transformers & Motor Drives Substations, Diesel Driven Generators, Overhead Cranes, Overhead Cranes & HVAC Units, AC & DC Drives, Data Logger, Electrical, Instrumentation & Mechanical Installation Maintenance, Slab Mills, Pre Heat Ovens, Hydraulic Shears, Stamping Machine, Gearboxes, Rollers, Pumps, Valves, Electro Magnets & Pump House Operation, Boilers Construction And Commissioning, Valve Calibration & Testing, Level Gauges, Pressure & Flow Transmitters Installation & Calibration, Pressure & Leak Testing of Boilers, Leak Testing, SMP, Elect, I&C, F&G, HVAC & Utility Services, Nitrogen Leak Test Operations, Steam Blowing Activities, SMP, Elect, I&C, F&G, HVAC & Utility Services, PTW Issue (PA/AC), Installation & Mechanical Piping and Hydro Testing & Leak Testing of Lines Installation.

During Mr. Steel's career life, he has gained his practical experience through several significant positions and dedication as the 3GP PBF & Boilers SC Commission Support, SC Site Execution Superintendent, E&I Construction Superintendent, High Voltage Construction Supervisor, Control & Power Construction Supervisor, Electrical & Instrumentation Supervisor, Electrical Technician, Construction Support Electrical Engineer, E&I Engineer, Electrical/Instrumentation Site Q.A/Q.C Inspector, Electrical/ Instrumentation Technician. Supervisor. Maintenance Fitter Instrumentation Technician, Millwright, Apprentice Millwright and Senior Instructor/Lecturer for Tengiz Chevron Oil Kazakhstan, Al Jubail Saudi Arabia, Escravos Delta state Nigeria, Lurgi S.A, SuD Chemie Sasol Catalysts, J C Groenewalds Construction (LTA), Tycon (Goodyear S.A.), Dragline Construction and Iscor Vanderbijlpark.

Mr. Steel has a **Diploma** in **Electronics Mechanic**. Further, he is a **Certified Instructor/Trainer** and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

EE1106- Page 4 of 10

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

2		
0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
	Introduction to Electrical Transmission Systems	
0830 - 0930	Role in Power System Network • Transmission versus Distribution Systems •	
	Historical Development • Future Trends and Challenges	
0930 - 0945	Break	
	Types of Transmission Systems	
0945 - 1030	HVAC versus HVDC Systems • Overhead Lines versus Underground Cables •	
	Single versus Three-Phase Systems • Selection Criteria	
1030 - 1130	Transmission System Components	
	Transmission Lines and Towers • Insulators and Conductors • Substations and	
	Switchyards • Transformers and Circuit Breakers	
	Voltage Levels & Grid Topologies	
1130 – 1215	Common Transmission Voltage Levels • Radial, Ring and Mesh Systems •	
	Regional Interconnections • National and GCC Interconnection Overview	
1215 – 1230	Break	
	Transmission System Standards & Regulations	
1230 - 1330	IEC and IEEE Standards • EWEC and National Grid Codes • Safety	
	<i>Compliance</i> • <i>Permitting and Environmental Considerations</i>	
1330 - 1420	Basic Electrical Calculations for Transmission	
	Voltage Drop • Power Loss and Efficiency • Current Capacity • Thermal	
	Limits	
1420 - 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day One	

EE1106- Page 5 of 10

Day 2		
	Line Route Selection	
0730 - 0830	Environmental Constraints • Land Use and Terrain • Economic	
	Considerations • Right-of-Way Acquisition	
	Conductor Selection & Sizing	
0830 - 0930	<i>Types of Conductors (ACSR, AAAC, etc.)</i> • <i>Current-Carrying Capacity</i> • <i>Sag-</i>	
	Tension Calculations • Bundled Conductors and Corona Effect	
0930 - 0945	Break	
	Tower Design & Foundation	
0945 - 1100	<i>Types of Towers (Suspension, Tension)</i> • <i>Wind and Loading Considerations</i> •	
	Structural Materials • Foundation Design Principles	
	Insulation & Clearance Design	
1100 – 1215	Electrical Stress Considerations • Air Clearance Standards • Pollution and	
	Contamination Effects • Insulator Types and Selection	
1215 – 1230	Break	
	Grounding & Shielding	
1230 - 1330	Earth Wire Functions • Grounding Resistance Requirements • Lightning	
	Protection • Step and Touch Potential Analysis	
	Thermal Rating & Line Ampacity	
1330 – 1420	Heat Transfer Mechanisms • Ambient Temperature Impact • Dynamic Line	
	Rating • Emergency Overload Capacity	
1420 – 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Two	

Dav 3

Duy 5		
	Substation Layout & Types	
0730 – 0830	AIS versus GIS Substations • One-Line Diagrams • Busbar Configurations •	
	Urban versus Rural Designs	
	Power Transformers in Transmission Systems	
0830 - 0930	Transformer Sizing and Ratings • Vector Groups and Phase Shift • Tap	
	Changers and Regulation • Protection and Monitoring	
0930 - 0945	Break	
	Switchgear & Circuit Breakers	
0945 – 1100	Types: Air, Oil, SF ₆ , Vacuum • Operating Principles • Application in	
	Substations • Maintenance Practices	
	Protection & Control Systems	
1100 – 1215	Relay Types and Settings • Zone Protection Concepts • Differential and	
	Distance Protection • SCADA Integration	
1215 – 1230	Break	
	Instrument Transformers (CTs & VTs)	
1230 - 1330	Purpose and Placement • Accuracy Classes • Safety Considerations •	
	Application in Metering and Protection	
1330 - 1420	Auxiliary & DC Systems	
	Battery Banks and Chargers • Control Cabling • Emergency Power • UPS and	
	AC/DC Conversion	
1420 - 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Three	

EE1106- Page 6 of 10

AWS

Day 4

	Power Flow in Transmission Lines	
0730 - 0830	Real and Reactive Power • Load Flow Equations • Power Angle Characteristics •	
	Voltage Regulation	
	Reactive Power & Voltage Control	
0830 - 0930	Role of Capacitors/Reactors • SVC and STATCOM Systems • Tap Changer	
	Coordination • Under/Over Voltage Protection	
0930 - 0945	Break	
	System Stability Analysis	
0945 – 1100	Transient, Steady-State and Dynamic Stability • Rotor Angle Stability •	
	Frequency Response • Grid Disturbance Handling	
	Transmission Losses & Efficiency	
1100 – 1215	<i>I</i> ² <i>R</i> Losses • Corona and Dielectric Losses • Economic Dispatch Considerations •	
	Minimization Techniques	
1215 – 1230	Break	
Load Dispatch & Grid Control	Load Dispatch & Grid Control	
1230 – 1330	Role of Load Dispatch Center (LDC) • Real-Time Monitoring • Load Forecasting •	
	Load Shedding Schemes	
1330 - 1420	Smart Grids & Transmission Automation	
	Wide Area Monitoring Systems (WAMS) • Synchrophasors and PMUs •	
	Automation Standards • AI and Predictive Analytics	
	Recap	
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about the	
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed	
	Tomorrow	
1430	Lunch & End of Day Four	

Day 5

	Transmission Line Inspection & Maintenance		
0730 - 0830	Visual Inspection Techniques • Thermography and UAVs • Condition-Based		
	Maintenance • Live-Line Maintenance		
	Substation Maintenance Practices		
0830 - 0930	Routine Testing Schedules • Infrared and Partial Discharge Analysis • Oil		
	Sampling and Diagnostics • Circuit Breaker Timing Tests		
0930 - 0945	Break		
0945 - 1030	Commissioning & Field Testing		
	Line Testing (IR, HiPot, Tan Delta) • Relay Setting Validation • Protection		
	Scheme Testing • Final Acceptance and Energization		
	Asset Management & Lifecycle Optimization		
1030 - 1130	Lifecycle Cost Analysis • Asset Health Indexing • Predictive Maintenance •		
	Reliability-Centered Maintenance		
	Renewable Energy Integration into Transmission		
1130 – 1230	Wind and Solar Power Impact • Grid Intermittency Management • Storage		
	Solutions • Hybrid AC/DC Grids		
1230 - 1245	Break		

EE1106- Page 7 of 10

	Emerging Technologies & Future Trends	
1245 – 1345	High-Temperature Superconductors (HTS) • HVDC Upgrades and MMC	
	Converters • Digital Substations • Cybersecurity in Transmission Systems	
	Course Conclusion	
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Course Topics that were Covered During the Course	
1400 – 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Troubleshooting Electrical Circuits V4.1", "Power World" and "ETAP software".

EE1106- Page 8 of 10

Troubleshooting Electrical Circuits V4.1 Simulator

Case B7FI Case Information Draw Onelines Tools Options	LAT, pwb. Status: Running. (PF) Simulator 13 Add Ons Window
Calculations Conductor Type Tower Configuration Parameters Calculation Amp to MVA Conversion Reverse Lookup Imple Tower Configuration Reverse Lookup Conductor Type Explore Conductor Tower Configuration Reverse Lookup Conductor Type Explore Conductor Tower Configuration Select Configuration Name Conductor Type Explore Line Length Declar Conductor Type Explore Name Line Length Declar Longtin Value Name Votage Base 138.000 N/A Value Dime Admitance Base 0.00525 Mhos	Results Copen Lumped Results Intermediate Results R = Ohms per phase B = Siemens per phase B = Siemens per phase B = Siemens per phase B = PU per phase B = PU per phase B = PU per phase Surge Impedance Loading MVA Note: Calculated using the long-line model of a transmission line (hyperbolic equations)
Edit Mode X = 20.96 Y = 66.22	Select Conductors and Configurations Database re X cancel 201 MWW 200 MWW AGC ON 0 Mvar Right Area Cost 4715 S/h

EE1106- Page 9 of 10

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

EE1106- Page 10 of 10

