

COURSE OVERVIEW ME0397 Practical Pump & Valve Technology

Selection, Operation, Control, Maintenance & Troubleshooting

(30 PDHs)

Course Title

Practical Pump & Valve Technology: Selection, Operation, Control, Maintenance & Troubleshooting

Course Reference

ME0397

Course Duration/Credits

Five days/3.0 CEUs/3.0 PDHs

Course Date/Venue

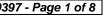
Session(s)	Date	Venue
1	May 04-08, 2025	Olivine Meeting Room, Fairmont Nile City, Cairo, Egypt
2	July 06-10, 2025	Meeting Plus 9, City Centre Rotana, Doha Qatar
3	September 21-25, 2025	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
4	October 26-30, 2025	Safir Meeting Room, Divan Istanbul, Turkey
5	December 22-26, 2025	Hampstead Meeting Room, Marriott London Regents Park, London, UK
6	February 01-05, 2026	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Description

The aim of this course is to provide delegates with a detailed and up-to-date overview of the operating performance of valves and pumps commonly employed in process plant and the manner in which they are chosen to provide the optimum configuration.

This course will concentrate on the fundamental aspects and operating principles and practice of pumps and control valves and will address the operating problems which are often experienced by plant personnel. This course will deliver this important engineering discipline whilst reducing to the absolute minimum the level of mathematics required.

On completion of this course, participants will be able to acquire the practical engineering knowledge to enable them not only to choose the correct device or combination of devices for a particular application but also to be in a position to resolve common operating problems associated with this topic. In addition, this course addresses the importance of safety in the selection and operation of these devices.



Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Select, operate, control, maintain and troubleshoot pumps and valves used in process industry
- Solve operating problems of pumps and valves which are often experienced by plant personnel
- Apply practical engineering knowledge that is essential not only to choose the correct device or combination of devices for a particular application but also to troubleshoot such devices correctly
- Recognize design issues and installation guidance for optimum performance of pumps and valves
- Employ proper techniques in operation and maintenance of pump and valves
- Implement proven control strategies for optimum pump and valve performance including analogue and digital controls signals

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC

Who Should Attend

This course provides an overview of all significant aspects and considerations of pump and valve for project engineers, process engineers and plant engineers in the oil, chemical and other process industries, who require a wider and deeper appreciation of the operating characteristics and the procedure required for the selection of pumps and valves. No prior knowledge of the topic is required.

Training Methodology

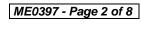
All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos


In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Andrew Ladwig is a Senior Process & Mechanical Engineer with over 25 years of extensive experience within the Oil & Gas, Refinery, Petrochemical & Power industries. His expertise widely covers in the areas of Ammonia Manufacturing & Process Troubleshooting, Distillation Towers, Crude Oil Distillation, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Ammonia Storage & Loading Systems, Ammonia Plant

Operation, Troubleshooting & Optimization, Ammonia Recovery, Ammonia Plant Safety, Hazard of Ammonia Handling, Storage & Shipping, Operational Excellence in Ammonia Plants, Fertilizer Storage Management (Ammonia & Urea), Fertilizer Manufacturing Process Technology, Sulphur Recovery, Phenol Recovery & Extraction, Wax Sweating & Blending, Petrochemical & Fertilizer Plants, Nitrogen Fertilizer Production, Petroleum Industry Process Engineering, Refining Process Petroleum Products, Refinery Planning & Economics, Safe Refinery Operations, Hydrotreating & Hydro-processing, Separators in Oil & Gas Industry, Gas Testing & Energy Isolations, Gas Liquor Separation, Industrial Liquid Mixing, Wax Bleachers, Extractors, Fractionation, Operation & Control of Distillation, Process of Crude ATM & Vacuum Distillation Unit, Water Purification, Water Transport & Distribution, Steam & Electricity, Flame Arrestors, Coal Processing, Environmental Emission Control, R&D of Wax Blending, Molding/Slabbing, Industrial Drying, Principles, Selection & Design, Certified Process Plant Operations, Control & Troubleshooting, Operator Responsibilities, Storage Tanks Operations & Measurements, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Performance, Efficiency & Optimization, Continuous Improvement & Benchmarking, Process Troubleshooting Techniques, Oil & Gas Operation/Introduction to Surface Facilities, Pressure Vessel Operation, Process Equipment Performance & Troubleshooting, Plant Startup & Shutdown, Startup & Shutdown the Plant While Handling Abnormal Conditions, Flare & Relief System, Process Gas Plant Start-up, Commissioning & Problem Solving, Process Liquid and Process Handling & Measuring Equipment. Further, he is also well-versed in Compressors & Turbines Operation, Maintenance & Troubleshooting, Heat Exchanger Overhaul & Testing Techniques, Balancing of Rotating Machinery (BRM), Pipe Stress Analysis, Valves & Actuators Technology, Inspect & Maintain Safeguarding Vent & Relief System, Certified Inspectors for Vehicle & Equipment, Optimizing Equipment Maintenance & Replacement Decisions, Certified Maintenance Planner (CMP), Certified Planning and Scheduling Professional (AACE-PSP), Tank Design, Construction, Inspection & Maintenance, Material Cataloguing, Specifications, Handling & Storage, Steam Trap Design, Operation, Maintenance & Troubleshooting, Steam Trapping & Control, Column, Pump & Exchangers, Troubleshooting & Design, Rotating Equipment Operation & Troubleshooting, Control & ESD System, Detailed Engineering Drawings, Codes & Standards, Budget Preparation, Allocation & Cost Control, Root Cause Analysis (RCA), Production Optimization, Permit to Work (PTW), Project Engineering, Data Analysis, Process Hazard Analysis (PHA), HAZOP Study, Sampling & Analysis, Training Analysis, Job Analysis Techniques, Storage & Handling of Toxic Chemicals & Hazardous Materials, Hazardous Material Classification & Storage/Disposal, Dangerous Goods, Supply Chain, Purchasing, Procurement, Logistics Management & Transport & Warehousing & Inventory, Risk Monitoring Authorized Gas Tester (AGT), Confined Space Entry (CSE), Personal Protective Equipment (PPE), Fire & Gas, First Aid and Occupational Health & Safety.

During his career life, Mr. Ladwig has gained his practical experience through his various significant positions and dedication as the Mechanical Engineer, Project Engineer, Reliability & Maintenance Engineer, Maintenance Support Engineer, Process Engineer, HSE Supervisor, Warehouse Manager, Quality Manager, Business Analyst, Senior Process Controller, Process Controller, Safety Officer, Mechanical Technician, Senior Lecturer and Senior Consultant/Trainer for various companies such as the Sasol Ltd., Sasol Wax, Sasol Synfuels, just to name a few.

Mr. Ladwig has a **Bachelor's** degree in **Chemical Engineering** and a **Diploma** in **Mechanical Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and has delivered various trainings, workshops, seminars, courses and conferences internationally.

Course Fee

Cairo	US\$ 8,800 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

<u> </u>	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Pumps and Valves
0030 - 0330	Highlighted Problem Areas
0930 - 0945	Break
0945 - 1100	General Description of Centrifugal Pumps and Turbines
1100 – 1215	Centrifugal Pumps
1100 - 1213	Torque, Head and Flow Calculations
1215 - 1230	Break
1230 – 1330	Axial Flow Pumps
1230 - 1330	Torque and Power Calculations
1330 - 1400	Video: Basic Pump Types and Technologies
1400 - 1420	Discussion
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

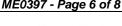
_	Pump Performance Curves
0730 – 0830	Centrifugal Multistage Pump • Mixed-Flow Machines • Effect of Impeller
	Speed and Diameter on Performance
0830 - 0930	Pump Specific Speed and Specific Radius
0930 - 0945	Break

0945 – 1100	Centrifugal Pumps Basics
	Types of Centrifugal Pumps • Self-Priming Pumps • Specific Speeds • Suction Specific Speed • Optimum Efficiency Point
	, , , , , , , , , , , , , , , , , , , ,
	Centrifugal Pump Design Issues
1100 – 1215	Balancing Disc • Impeller NPSHR • Impeller Centre-Rib • Mechanical
1100 - 1213	Seals • Velocity Head • Affinity Laws • Suction Lift • Re-Rate/Retrofit
	Head-Rise Radial/Horizontal Split Case
1215 - 1230	Break
1230 – 1400	Centrifugal Pump Installation Guidance for Optimum Performance
1230 - 1400	Foundation Problems • Soft Foot • Suction Pipe • Suction Strainer
1400 - 1420	Video: Fundamentals of Pump Performance
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

Day 3	
0730 - 0930	Optimum Centrifugal Pump Operation
	Start-up • Minimum Flow • Maximum Pump RPM • Motor
0730 - 0930	Current/Specific Gravity • Entrained Gas • Operation at Shut Off •
	Temperature-Rise • Thermal Shock
0930 - 0945	Break
	Centrifugal Pump Maintenance
0945 - 1100	Case Gasket • Checking For Wear Clearance • Oil Change • Pump Storage
0943 - 1100	• Bearing Failures • Bearing Housing Oil Leakage • Cavitation Noise and
	Damage • Pump Vibration • Cracked Volute Tongues
	Centrifugal Pump Re-Rate/Retrofit
1100 - 1215	Impeller Cut • NPSH • De-Staging • Electric Motor Sizing • Effect of
	Viscosity Changes on Optimum Performance
1215 - 1230	Break
1230 - 1300	Video: Pump Hydraulic Loads, Critical Speed and Torque
1300 - 1330	Video: Bearings, Seals and Couplings
1330 - 1420	Discussion Forum
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

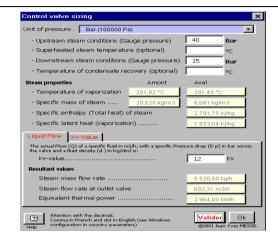
Day 4

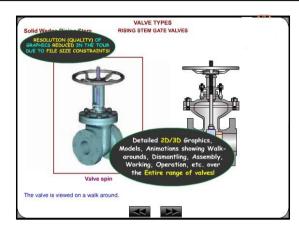

Day 4	
	Principles of Control Valve Technology [1]
0730 - 0830	Types of Control Valves, e.g. Globe, Butterfly, Ball and Cage Valves etc.
	Control Valve Flow Characteristics • Noise and Cavitation in Control Valves
	Principles of Control Valve Technology [2]
0830 - 0930	Actuators and Positioners • Valve Testing • Transmitters for Each of the
	Process Variables • Smart Transmitters • Control Loon Testing

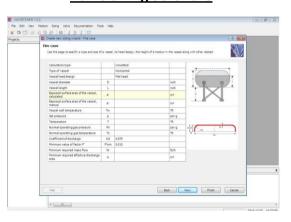
0930 - 0945	Break
0945 – 1100	<i>Valve Control Loops</i> The 3-15 psi and 4 - 20 MA Control Loops ● Digital Transmission and the Control Room
1100 – 1215	Control Strategies for Optimum Valve Performance Manual Control • Feedback Control • Feed Forward Control • Simple On- Off Control
1215 - 1230	Break
1230 – 1330	Other Control Strategies Proportional, Integral and Derivative Control-Valve Systems
1330 – 1420	Analogue and Digital Control Signals Direct Digital Control, Analogue/Digital Conversion, Digital/Analogue Conversion
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5

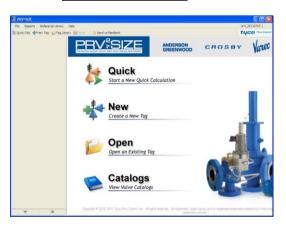
Day 0	
0730 - 0930	Valve Safety Issues
	Cleanliness, Fault-Finding Instrumentation, Preventive Maintenance
0930 - 0945	Break
	Centrifugal Pump Troubleshooting
0945 – 1215	Bearing Failures • Bearing Housing Oil Leakage • Cavitation Noise and
0343 1213	Damage • Impeller Cavitation/Erosion • Vibration • Cracked Volute
	Tongues • Net Positive Suction Head
1215 - 1230	Break
1230 - 1300	Video: Special Pump Topics
1300 - 1345	Discussion Forum
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



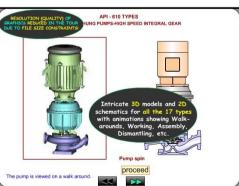



Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software", "PRV2SIZE Software" and "Centrifugal Pumps and Troubleshooting Guide 3.0" simulators.



Valve Sizing Software



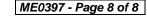
Valve Software 3.0

PRV²SIZE Software

Valvestar 7.2 Software

Centrifugal Pumps and Troubleshooting Guide 3.0

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

