

COURSE OVERVIEW EE0275 Power System Protection & Relaying

Electrical Protection Systems

Course Title

Power System Protection Relaying: Electrical Protection Systems

Course Date/Venue

Session 1: February 23-27, 2025/Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

Session 2: November 23-27, 2025/Boardroom 1, Elite Byblos Hotel, Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

EE0275

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide delegates with detailed and up-to-date overview of power system protection and relaying. It covers the various faults, their effects and calculations including the effect of faults on equipment; and the earthing system and standard requirement.

The course will also discuss the protection devices and technology including history, construction and principles of protection relays; the IED's and fuses; the instrument transformers, current and voltage transformers as well as types, construction, performance, specification and applications; the tripping devices of circuit breakers; the mechanism of electric arc breakdown; and the principles & calculation of settings for grading and protection coordination.

Overhead lines and feeder protection including the common types of faults and causes; the proper procedure for transformer protection related to restricted Buchholz relay, overpressure, oil and winding temperature; the proper procedure for motor protection; various electrical and mechanical faults; the various generator data requirements; the types of faults, excitation fault protection and mechanical fault protection; the miscellaneous protection including voltage and frequency protections, bus bar protection; and the circuit breaker failure protection will also be discussed during the course.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain systematic techniques in power system protection and relaying
- Identify various faults, their effects and calculations including the effect of faults on equipment
- Recognize earthing system and standard requirement
- Explain protection devices and technology including history, construction and principles of protection relays
- Describe IED's and fuses covering the main protection and back-up protection
- Discuss instrument transformers including current and voltage transformers as well as types, construction, performance, specification and applications
- Review tripping devices of circuit breakers and illustrate the mechanism of electric arc breakdown
- Explain the principles & calculation of settings for grading and protection coordination & cite practical examples
- Analyse overhead lines and feeder protection including the common types of faults and causes
- Implement the proper procedure for transformer protection related to restricted Buchholz relay, overpressure, oil and winding temperature
- Apply the proper procedure for motor protection by analyzing motor data requirements as well as identifying various electrical and mechanical faults
- List the various generator data requirements, types of faults, excitation fault protection and mechanical fault protection
- Identify miscellaneous protection including voltage and frequency protections, bus bar protection and circuit breaker failure protection
- Employ protection relay management and practice simulator

Who Should Attend

This course provides a complete and up-to-date overview of the power system protection and relaying for engineers and other technical staff who are involved in the protection and relaying of various power systems, equipment and networks.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

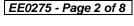
30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.



Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Pan Marave, PE, MSc, BEng, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience in Oil, Gas, Petrochemical, Refinery & Power industries. His expertise includes Circuit Breaker, HV Switchgear Maintenance, HV/LV Electrical Authorisation, Basic Electricity, Electrical & Special Hazards, Personnel Protection, HV/LV Equipment, Motor Controllers, Electrical Switching Practices, Emergency Planning,

Safety Management, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD); DCS, SCADA & PLC; Measurement (Flow, Temperature, Pressure); Process Analyzers & Analytical Instrumentation; Process Control, Instrumentation & Safeguarding; Process Controller, Control Loop & Valve Tuning; Industrial Distribution Systems; Industrial Control & Control Systems, Power Systems Protection & Relaying; Earthing, Bonding, Grounding, Lightning & Surge Protection; Electric Power Substation & Systems; Electrical Engineering Principles; Motor Control Circuit; Electrical Fault Analysis; Electrical Networks & Distribution Cables; Circuit Breakers, Switchgears, Transformers, Hazardous Areas Classification and Detailed Engineering Drawings, Codes & Standards. Furthermore, he is also well-versed in Microprocessors Structure, Lead Auditor (ISO 9000:2000), ISO 9002, Quality Assurance, and Projects & Contracts Management.

Presently, Mr. Marave is the **Technical Advisor** of **Chamber of Industry & Commerce** in Greece. Prior to this, he gained his thorough practical experience through several positions as the **Technical Instructor**, **Engineering Manager**, **Electronics & Instruments Head**, **Electrical**, **Electronics & Instruments Maintenance Superintendent**, **Assistant General Technical Manager** and **Engineering Supervisor** of various international companies such as the **Alumil** Mylonas, **Athens Papermill**, **Astropol** and the **Science Technical Education**.

Mr. Marave is a Registered Professional Engineer and has Master's and Bachelor's degrees in Electrical Engineering from the Polytechnic Institute of New York and Pratt Institute of New York (USA) respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and an active member of the Technical Chamber and the Institute of Electrical and Electronics Engineer (IEEE) in Greece. He has presented and delivered numerous international courses, conferences, trainings and workshops worldwide.

<u>Course Program</u>
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Registration & Coffee
Welcome & Introduction
PRE-TEST
Basic Concepts
Introduction to the Topic • Main Electric Parameters & Laws • Standards &
Regulations • Standard Voltages
Break
Faults, Their Effects & Calculations
Types of Faults & Causes • Lightning, Switching Overvoltage & Use of Surge
Arresters • Safety, Safety Distances & the Dangers of Faults • Short-circuit
Faults (Phase & Earth Faults)
Faults, Their Effects & Calculations (cont'd)
The Effect of Faults On Equipment (Thermal & Electromechanical Stress)
Short-circuit Calculations • Examples & Exercises
Break
Earthing System & Standard Requirement
Solid, Impedance & Ungrounded Systems • The Implications of Various
Grounding Techniques on System Performance • Earth Grid & Calculations •
Touch & Step Potentials • Examples & Exercises
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the
Topics that were Discussed Today and Advise Them of the Topics to be Discussed
Tomorrow
Lunch & End of Day One

Dav 2

Duy L	
0730 – 0830	Protection Devices & Technology
	Introduction to Protection • Simple Protection Devices • Protection Relays
	(History; Construction & Principles of Operation; Modern Technology) •
	Classification of Protection Relays & Codes
0830 - 0930	Relays
	Thermal Overload • Induction Type & Microprocessors Relays • Earth Fault
	• Over Current • Reverse Power • Field Failure • Shunt Trip, • Earth
	Leakage Relays
0930 - 0945	Break
0945 – 1045	IED's & Fuses
	Main Protection & Back-up Protection ● Intelligent Electronic Devices (IED's) ●
	Fuses (Characteristics, Applications & Special Cares) • Examples & Exercises
1045 - 1115	Instrument Transformers
	Current & Voltage Transformers • Types, Construction, Performance,
	Specification & Applications
1115 - 1200	Instrument Transformers (cont'd)
	Magnetisation Curve & Characteristics (Ratio, Accuracy & Burden Power) •
	Testing ● Examples

1200 - 1230	Tripping Devices - Circuit Breakers The Mechanism of Electric Arc Breakdown ● Types of Circuit Breakers & Applications (LV, MV & HV)
1230 - 1245	Break
1245 - 1420	Tripping Devices - Circuit Breakers (cont'd) Main Characteristics ● Operating Mechanism, Tripping Circuits & Control Systems ● Examples
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

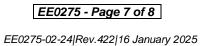
Day 3

Day 3	
	Grading & Protection Co-ordination
	Principles • Analysis in HV, MV and LV Networks (Transmission &
0730 - 0930	Distribution Networks; Users' Networks) • Calculation of Settings • LV
	Approach (Typical Time-Current Curves & Selectivity of LV Circuit Breakers) ●
	Practical Examples
0930 - 0945	Break
	Overhead Lines & Feeder Protection
	Analysis in HV, MV & LV Networks (Transmission & Distribution Networks) –
0945 - 1115	Common Types of Faults & Causes • Distance Protection (Principle &
	Application) • Line Differential Protection (Principle & Application) •
	Overcurrent Protection • Temporary Faults & Auto-Reclosing
1115 - 1200	Overhead Lines Protection (cont'd)
1113 - 1200	Practical Examples
	Cable Protection
1200 - 1230	Common Types of Faults & Causes • Differential Protection • Overcurrent
	Protection (Thermal & Short-circuit
1230 - 1245	Break
1245 1420	Transformer Protection
1245 - 1420	Basic Theory of Transformers ● Types of Transformers & Applications
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4

0730 – 0930	Transformer Protection (cont'd) Main Electric Characteristics & Vector Group ● Built-on Protections (Buchholz Relay, Overpressure, Oil & Winding Temperature) ● Transformer Differential Protection (Principle & Application) ● Overcurrent Protection ● Practical Examples
0930 - 0945	Break
0945 - 1130	Motor Protection Motor Data Requirements ● Common Types of Faults (Electrical & Mechanical) ● Motor Controllers & Starters ● Overcurrent (Phase-to Earth & Phase-to-Phase Short-circuit) & Thermal Overload Protection

1130 - 1230	Motor Protection (cont'd) Negative Phase Sequence, Phase Unbalance & Phase Reversal Protections ● Bearing Temperature, Winding Temperature, Vibration & Blocked Rotor Protections ● Practical Examples & Exercises
1230 - 1245	Break
1245 - 1420	Generator Protection Generator Data Requirements & Basic Theory ● Common Types of Faults (Electrical & Mechanical)
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Four


Day 5	
0730 - 0830	Generator Protection (cont'd) Rotor & Stator Electric Faults Protection • Excitation Fault Protection • Voltage and Power (Reverse Power) Protections • Overfrequency & Overspeed
	Protections • Mechanical Faults Protection Generator Protection (cont'd)
0830 - 0930	Practical Examples & Exercises
0930 - 0945	Break
0945 - 1100	Miscellaneous Protections Voltage & Frequency Protections ● Bus Bar Protection ● Circuit Breaker Failure Protection ● Testing
1100 - 1230	Miscellaneous Protections (cont'd) Single Phase Distribution Protections • Three Phase Distribution Protections • Circuit Diagrams for Protection Relays • Protection Coordination Curves & Grading • Testing of Relays • Causes of Termination Heating & Preventive Measure • Cause & Effect of Overload, Over Current, Short Circuit & Preventive Measures
1230 – 1245	Break
1245 – 1345	Protection Relay Management & Practice Simulator Scheme Design ● SAT & FAT ● Commissioning ● Maintenance & Testing
1345 - 1400	Course Conclusion Using this Course Overview, the Instructor(s) will Brief Participants about the Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "GE Multilin Relay 469" and "GE Multilin Relay 750".

GE Multilin Relay 469 Simulator

GE Multilin Relay 750 Simulator

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

