

COURSE OVERVIEW ME0109 Advanced Machinery Dynamics

Course Title Advanced Machinery Dynamics

Course Date/Venue

July 20-24, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

Course Reference ME0109

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Advanced Machinery Dynamics. It covers the definitions and scope of dynamics in rotating and reciprocating and applications machinery in turbines. compressors, pumps and gearboxes; the vibration theory, mass, stiffness and damping characteristics, rotordynamics basics. modelina mechanical systems and measurement tools and instrumentation; the rotor dynamic instabilities, balancing of rotating equipment, journal and rolling element bearings, critical speed analysis and shaft alignment and its dynamic implications; the types of lateral vibrations and effects on bearings and structure; and troubleshooting high lateral vibration.

During this interactive course, participants will learn the torsional vibration dynamics, coupling dynamics and influence, advanced modal analysis, noise and vibration control techniques and machinery fault diagnosis using vibration; the gearbox vibration and noise, reciprocating machinery dynamics, finite element analysis in machinery and turbomachinery vibration and blade dynamics; the transient dynamic analysis, condition monitoring integration, advanced signal processing techniques and fault detection and root cause analysis; and the active vibration control, optimize dynamic performance and digital twin and simulation in dynamics.

ME0109- Page 1 of 8

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an advanced knowledge on machinery dynamics
- Explain the definitions and scope of dynamics in rotating and reciprocating machinery and applications in turbines, compressors, pumps and gearboxes
- Discuss vibration theory, mass, stiffness and damping characteristics, rotordynamics basics, modeling mechanical systems and measurement tools and instrumentation
- Identify rotor dynamic instabilities, balancing of rotating equipment, journal and rolling element bearings, critical speed analysis and shaft alignment and its dynamic implications
- Recognize the types of lateral vibrations, effects on bearings and structure and troubleshoot high lateral vibration
- Discuss torsional vibration dynamics, coupling dynamics and influence, advanced modal analysis, noise and vibration control techniques and machinery fault diagnosis using vibration
- Determine gearbox vibration and noise, reciprocating machinery dynamics, finite element analysis in machinery and turbomachinery vibration and blade dynamics
- Carryout transient dynamic analysis, condition monitoring integration, advanced signal processing techniques and fault detection and root cause analysis
- Discuss active vibration control, optimize dynamic performance as well as identify digital twin and simulation in dynamics

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet **PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of advanced machinery dynamics for mechanical engineers, maintenance and reliability engineers, plant engineers and technicians, vibration analysts and condition monitoring specialists, equipment designers and OEM engineers, technical consultants, operations supervisors and managers and other technical staff.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

ME0109- Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education set by BAC.

• ACCREDITED PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

ME0109- Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience. His wide expertise includes Piping & Pipeline. Maintenance. Repair, Shutdown, Turnaround & Outages. Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive & Preventive Maintenance,

Maintenance & Operation Cost Reduction Techniques, Reliability Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety **Relief Valve** Sizing & Selection, **Valve** Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, **Clutches** and **Gears**. Further, he is also versed in **Wastewater Treatment** Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the **Project** Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a **Registered Professional Engineer** in the **USA** and **Greece** and has a **Master's** and **Bachelor's** degree in **Mechanical Engineering** with **Honours** from the **Purdue University** and **SIU** in **USA** respectively as well as an **MBA** from the **University** of **Phoenix** in **USA**. Further, he is a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management** (**ILM**) a **Certified Instructor/Trainer** and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

ME0109- Page 4 of 8

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 20 th of July 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Machinery Dynamics</i> Definitions and Scope of Dynamics in Rotating and Reciprocating Machinery • Importance in Reliability, Safety, and Performance • Historical Development and Advancements • Applications in Turbines, Compressors, Pumps and Gearboxes
0930 - 0945	Break
0945 – 1030	Vibration Theory Refresher Simple Harmonic Motion and Damped Systems • Free versus Forced Vibrations • Resonance and Natural Frequency Concepts • Vibration Modes and Critical Speeds
1030 - 1130	Mass, Stiffness & Damping Characteristics Influence on System Behavior • Methods of Estimation and Measurement • Role in Design and Diagnostics • Dynamic Stiffness and its Frequency Dependence
1130 - 1215	Rotordynamics Basics Jeffcott Rotor Model • Whirling Phenomena and Stability • Critical Speed Maps and Campbell Diagrams • Unbalance Response
1215 – 1230	Break
1230 - 1330	Modeling Mechanical SystemsLumped versus Distributed Parameter Models • Finite Element Method (FEM)Overview • Modal Analysis Introduction • Simulation Tools Used in Industry
1330 - 1420	<i>Measurement Tools & Instrumentation</i> <i>Proximity Probes and Accelerometers</i> • <i>Data Acquisition Systems</i> • <i>Signal</i> <i>Conditioning Basics</i> • <i>Calibration and Installation Best Practices</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One
(HUMMONT IN)	ME0109- Page 5 of 8

Day 2:	Monday, 21 st of July 2025
	Rotor Dynamic Instabilities
0730 - 0830	Oil Whip and Oil Whirl • Cross-Coupled Stiffness Effects • Instability
	Thresholds • Bearing-Induced Instability
	Balancing of Rotating Equipment
0830 - 0930	Types of Balancing (Static, Dynamic, Couple) • Balancing Machines and Field
0050 - 0550	Balancing • Influence of Keyphasors and Run-Up/Down • ISO Balance Quality
	Grades
0930 - 0945	Break
	Journal & Rolling Element Bearings
0945 – 1100	Dynamic Behavior and Fluid Film Modeling • Bearing Selection and
0945 - 1100	Stiffness/Damping Contributions • Orbit Plots and Interpretation • Faults and
	Diagnostics
	Critical Speed Analysis
1100 – 1215	Determining Critical Speeds Theoretically and Practically • Mode Shapes and
1100 - 1215	Modal Testing • Effects of Gyroscopic Moments • Campbell Diagrams
	Interpretation
1215 - 1230	Break
	Shaft Alignment & its Dynamic Implications
1230 - 1330	Types of Misalignment (Angular, Parallel, Combined) • Effects on Vibration
	Levels • Alignment Tools and Methods • Influence on Bearing and Seal Life
	Case Studies in Rotordynamics
1330 - 1420	High-Speed Turbine Vibration • Compressor Unbalance Troubleshooting •
	Rotor Bow Detection • Shaft Crack Monitoring Techniques
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Tuesday, 22 nd of July 2025
	Lateral Vibration Behavior
0730 – 0830	Types of Lateral Vibrations • Effects on Bearings and Structure •
	Troubleshooting High Lateral Vibration • Field Measurement Examples
	Torsional Vibration Dynamics
0830 - 0930	Torque Transmission and Shaft Twist • Torsional Natural Frequencies •
	Resonance and Damping • Torsional Vibration Measurement Methods
0930 - 0945	Break
	Coupling Dynamics & Influence
0945 – 1100	Types of Couplings and Their Dynamic Behavior • Torsional Stiffness and
	Damping • Backlash and Misalignment • Design Considerations
	Advanced Modal Analysis
1100 – 1215	Experimental Modal Testing • Mode Identification and Separation •
	<i>Operational Deflection Shapes (ODS)</i> • <i>Software-Based Modal Extraction</i>
1215 – 1230	Break
	Noise & Vibration Control Techniques
1230 - 1330	Active versus Passive Damping • Isolation Systems • Tuned Mass Dampers •
	Dynamic Absorbers

ME0109- Page 6 of 8

1330 - 1420	<i>Machinery Fault Diagnosis Using Vibration</i> <i>Spectral Signatures of Common Faults</i> • <i>Sidebands, Harmonics and Beat</i> <i>Frequencies</i> • <i>Enveloping Techniques</i> • Use of FFT and Time-Domain <i>Correlation</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday, 23 rd of July 2025
0730 - 0830	Gearbox Vibration & Noise
	Gear Mesh Frequency and Modulation • Backlash and Alignment Effects •
	Lubrication Influence on Dynamics • Detection of Gear Defects
	Reciprocating Machinery Dynamics
0830 - 0930	Piston Slap, Connecting Rod Dynamics • Inertia Unbalance and Gas Forces •
	Cylinder Pressure Effects • Crosshead and Crankshaft Vibration
0930 - 0945	Break
	Finite Element Analysis in Machinery
0945 – 1100	Meshing Techniques for Rotating Machinery • Boundary Conditions and
	Constraints • Coupled Dynamic Simulations • Validation with Field Data
	Turbomachinery Vibration & Blade Dynamics
1100 – 1215	Blade Natural Frequencies and Campbell Diagram • Mistuning Effects • Blade
	Crack Detection • Blade Tip Timing Methods
1215 – 1230	Break
	Transient Dynamic Analysis
1230 – 1330	Start-Up and Shutdown Events • Sudden Load or Speed Changes • Simulation
	and Instrumentation • Time-Varying Signal Analysis
1330 - 1420	Condition Monitoring Integration
	Real-Time Monitoring Systems • Trend Analysis and KPIs • Sensor Placement
	Strategies • Predictive Maintenance Case Studies
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5:	Thursday, 24 th of July 2025
	Advanced Signal Processing Techniques
0730 - 0830	Wavelet Transforms • Cepstrum and Envelope Analysis • Order Tracking •
	Data Fusion and Statistical Tools
	Fault Detection & Root Cause Analysis
0830 - 0930	Machine Learning in Diagnostics • Fault Tree and FMEA • Integrated
	Diagnostics Platforms • Reliability-Centered Maintenance (RCM)
0930 - 0945	Break
	Active Vibration Control
0945 – 1100	Piezoelectric and Magnetic Actuators • Feedback and Feedforward Strategies •
	Digital Signal Processing • Case Studies in Rotating Equipment
	Optimization of Dynamic Performance
1100 – 1215	Design Parameter Sensitivity • Tuning for Minimal Dynamic Amplification •
	Damping Optimization • Material and Geometry Considerations
1215 – 1230	Break

ME0109- Page 7 of 8

Haward Technology Middle East

1230 - 1345	Digital Twin & Simulation in Dynamics Building Digital Replicas for Dynamic Modeling • Sensor Integration and Real-Time Updates • Simulation of Wear and Fault Propagation • Future Applications in AI-Driven Diagnostics
1345 - 1400	<i>Course Conclusion</i> Using this Course Overview, the Instructor(s) will Brief Participants about to Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "MTBF Calculator" and "ManWinWin Express CMMS Software".

Course Coordinator Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

ME0109- Page 8 of 8

