

COURSE OVERVIEW ME1140-2D Valves Overhauling Procedure

ppHs)

AWARD

Course Title

Valves Overhauling Procedure

Course Reference

ME1140-2D

Course Duration/Credits

Two days/1.2 CEUs/12 PDHs

Course Date/Venue

Session(s)	Date	Venue	
1	June 15-16, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE	
2	August 04-05, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE	
3	October 05-06, 2025	Tamra Meeting Room, Al Bandar Rotana Creek, Dubai, UAE	
4	December 08-09, 2025	Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE	

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Valves Overhauling Procedure. It covers the types of valves including components and functions and its importance in industrial systems; the general procedures and steps in valve overhauling and tools required for valve disassembly; the detailed inspection of valve components and wear and tear or damage; repairing or replacing valve components; the valve component reconditioning techniques and step-by-step valve assembly procedure; and the torque specifications for each component, testing valve function during reassembly and final inspection before testing.

During this interactive course, participants will learn the types of seals and gaskets used in valves; the installation and maintenance of seals and prevention of leaks during overhauling; the pressure testing, functionality tests for closing and sealing, openina. leak testina and troubleshooting and adjusting valves for correct operation; the common valve issues, common causes of valve failure and solutions and corrective actions; the techniques for reducing the need for overhauling and monitoring valve performance through sensors; and the industry standards and industry best practices in valve overhauling.

ME1140-2D - Page 1 of 7

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on valves overhauling procedure
- Identify the types of valves including components and functions and its importance in industrial systems
- Explain the general procedures and steps in valve overhauling and the tools required for valve disassembly
- Carryout detailed inspection of valve components and identify wear and tear or damage
- Repair or replace valve components and apply valve component reconditioning techniques
- Illustrate step-by-step valve assembly procedure, torque specifications for each component, testing valve function during reassembly and final inspection before testing
- Identify the types of seals and gaskets used in valves, install and maintain seals and prevent leaks during overhauling
- Apply pressure testing, functionality tests for opening, closing, and sealing, leak testing and troubleshooting and adjusting valves for correct operation
- Identify common valve issues, common causes of valve failure and solutions and • corrective actions
- Implement techniques for reducing the need for overhauling and monitor valve performance through sensors
- Maintain inspection and maintenance records, comply with industry standards and apply industry best practices in valve overhauling

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of valves overhauling procedure for maintenance technicians/engineers, mechanical engineers, quality assurance/quality control (QA/QC) personnel, safety officers, operations personnel, ttrainees or apprentices (optional), third-party Inspectors (if required) and other technical staff.

ME1140-2D - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 1.2 CEUs (Continuing Education Units) or 12 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

ME1140-2D - Page 3 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Manuel Dalas MSc, BSc, is a Senior Mechanical & Maintenance Engineer with over 25 years of industrial experience in Oil, Gas, Refinery, Petrochemical, Power and Nuclear industries. His wide expertise includes Gas Turbines & Compressors Troubleshooting, Gas Turbines Performance, Maintenance & Testing, Gas Turbine Performance and Optimization, Gas Turbine Control Systems, Advanced Gas Turbine, Gas Turbine Design and Analysis, Air Compressor & Gas Turbines Selection and Design, Material

Cataloguing, Maintenance Planning & Scheduling, Reliability Centered Maintenance (RCM), Reliability Maintenance, Condition Based Maintenance & Condition Monitoring, Asset & Risk Management, Vibration Condition Monitoring & Diagnostics of Machines, Vibration & Predictive Maintenance, Reliability Improvement & Vibration Analysis for Rotating Machinery, Effective Maintenance Shutdown & Turnaround Management, Engineering Codes & Standards, Rotating Equipment Maintenance, Mechanical Troubleshooting, Static Mechanical Equipment Maintenance, Machinery Failure Analysis, Machinery Diagnostics & Root Cause Failure Analysis, Plant Reliability & Maintenance Strategies, Boiler Operation & Water Treatment, Pumps Maintenance & Troubleshooting, Fans, Blowers & Compressors, **Process Control Valves**, Piping Systems & Process Equipment, Advanced Valve Technology, Pressure Vessel Design & Analysis, Steam & Gas Turbine, High Pressure Boiler Operation, FRP Pipe Maintenance & Repair, Centrifugal & Positive Displacement Pump Technology Troubleshooting & Maintenance, Rotating Machinery Best Practices, PD Compressor & Gas Engine Operation & Troubleshooting, Hydraulic Tools & Fitting, Mass & Material Balance, Water Distribution & Pump Station, Tank Farm & Tank Terminal Safety & Integrity Management, Process Piping Design, Construction & Mechanical Integrity, Stack & Noise Monitoring, HVAC & Refrigeration Systems, BPV Code, Section VIII, Division 2, Facility Planning & Energy Management, Hoist - Remote & Basic Rigging & Slinging, Mobile Equipment Operation & Inspection, Heat Exchanger, Safety Relief Valve, PRV & POPRV/PORV, Bearing & Lubrication, Voith Coupling Overhaul, Pump & Valve Technology, Lubrication Inspection, Process Plant Optimization, Rehabilitation, Revamping & Debottlenecking, Engineering Problem Solving and Process Plant Performance & Efficiency. Currently, he is the Technical Consultant of the Association of Local Authorities of Greater Thessaloniki where he is in charge of the mechanical engineering services for piping, pressure vessels fabrications and ironwork.

During his career life, Mr. Dalas has gained his practical and field experience through his various significant positions and dedication as the **Technical Manager**, **Project Engineer**, **Safety Engineer**, **Deputy Officer**, **Instructor**, **Construction Manager**, **Construction Engineer**, **Consultant Engineer** and **Mechanical Engineer** for numerous multi-billion companies including the **Biological Recycling Unit** and the **Department of Supplies** of **Greece**, **Alpha Bank Group**, **EMKE S.A**, **ASTE LLC** and **Polytechnic College of Evosmos**.

Mr. Dalas has a Master's degree in Energy System from the International Hellenic University, School of Science & Technology and a Bachelor's degree in Mechanical Engineering from the Mechanical Engineering Technical University of Greece along with a Diploma in Management & Production Engineering from the Technical University of Crete. Further, he is a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership and Management (ILM), a Certified Project Manager Professional (PMI-PMP), a Certified Instructor/Trainer, a Certified Energy Auditor for Buildings, Heating & Climate Systems, a Member of the Hellenic Valuation Institute and the Association of Greek Valuers and a Licensed Expert Valuer Consultant of the Ministry of Development and Competitiveness. He has further delivered numerous trainings, courses, seminars, conferences and workshops internationally.

ME1140-2D - Page 4 of 7

ilm

ACEI

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ \$2,750 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
-------	--

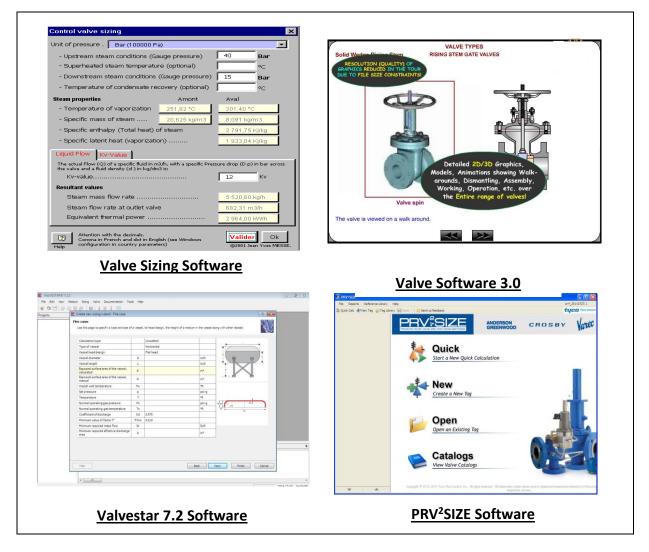
Day 1		
0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	<i>Introduction to Valves</i> Definition and Types of Valves (Gate, Globe, Ball, Check, etc.) • Valve Components and Their Functions • Importance of Valves in Industrial Systems • Valve Materials and Selection Criteria	
0930 - 0945	Break	
0945 – 1030	Valve Overhauling OverviewWhat is Valve Overhauling?Why Overhauling is Necessary for ValveLongevity and PerformanceGeneral Procedures and Steps in ValveOverhaulingCommon Issues Requiring Valve Overhauling	
1030 - 1130	Valve Disassembly Process Tools Required for Valve Disassembly • Step-by-Step Disassembly Process • Inspection During Disassembly • Safety Precautions During Disassembly	
1130 – 1215	Cleaning & Inspection of Valve Components Types of Cleaning Techniques (Manual, Ultrasonic, etc.) • Importance of Cleaning in Preventing Future Damage • Detailed Inspection of Valve Components (Seat, Disc, Stem, etc.) • Identification of Wear and Tear or Damage	

ME1140-2D - Page 5 of 7 ME1140-2D-06-25/Rev.00/17 April 202

1215 - 1230	Break
	Repairing or Replacing Valve Components
1230 - 1330	Criteria for Deciding Whether to Repair or Replace Valve Parts • Common
	Repairs for Valve Components (Seat Re-Facing, Valve Stem Replacement) •
	Sourcing Replacement Parts • Valve Component Reconditioning Techniques
1330 - 1420	Assembling the Valve
	Step-by-Step Valve Assembly Procedure • Torque Specifications for Each
1550 - 1420	Component • Testing Valve Function During Reassembly • Final Inspection
	Before Testing
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Dav 2

	Sealing Mechanisms & Gaskets	
0730 – 0830	Types of Seals and Gaskets Used in Valves • Material Selection for Seals and	
0750 - 0050	Gaskets • Installation and Maintenance of Seals • Preventing Leaks During	
	Overhauling	
	Valve Testing Methods	
0830 - 0930	Pressure Testing: Hydrostatic and Pneumatic Tests • Functionality Tests for	
0830 - 0930	Opening, Closing, and Sealing • Leak Testing and Troubleshooting •	
	Adjusting Valves for Correct Operation	
0930 - 0945	Break	
	Troubleshooting Valve Issues	
	Identifying Common Valve Issues (Leakage, Improper Sealing, Erratic	
0945 – 1100	Operation) • Troubleshooting Using Diagnostic Tools (Leak Detectors,	
	Pressure Gauges) • Common Causes of Valve Failure • Solutions and	
	Corrective Actions	
	Preventive Maintenance for Valves	
1100 – 1230	<i>Importance of Regular Valve Maintenance</i> • <i>Techniques for Reducing the Need</i>	
1100 - 1230	for Overhauling • Monitoring Valve Performance Through Sensors •	
	Recordkeeping and Tracking Valve Maintenance History	
1230 – 1245	Break	
	Documentation & Compliance	
1245 - 1315	Importance of Proper Documentation in Valve Overhauling • Maintaining	
1240 - 1010	Inspection and Maintenance Records • Compliance with Industry Standards	
	(API, ASME, ANSI, etc.) • Auditing and Certification of Overhauled Valves	
	Best Practices & Industry Standards	
1315 - 1345	Overview of Industry Best Practices in Valve Overhauling • Key Standards	
1010 1010	and Codes to Follow • Training Requirements for Overhauling Personnel •	
	Future Trends in Valve Maintenance and Overhauling Technology	
	Course Conclusion	
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Course Topics that were Covered During the Course	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	


UKAS

ISO 9001:2015 Certif

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV2SIZE Software".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME1140-2D - Page 7 of 7

