

## **COURSE OVERVIEW TE0310** Water Losses/Non-Revenue Water Analysis

## Course Title

Water Losses/Non-Revenue Water Analysis

## Course Date/Venue

July 28-August 01, 2025/Glasshouse Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE 3.0 CEUS

(30 PDHs)

#### Course Reference TE00310

#### **Course Duration/Credits** Five days/3.0 CEUs/30 PDHs

## **Course Description**









## This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Water Loss Revenue. Non-revenue Water & Management. It covers the water losses and NRW components, impact of NRW on water utilities and environment and global benchmarks and KPIs; the water balance and components, economic impacts of NRW, measurement and data requirements and regulatory frameworks and standards; the leakage detection techniques using acoustic methods, smart pressure sensors and loggers, night flow analysis and district metered areas (DMAs); and the leakage detection techniques using acoustic methods, smart pressure sensors and loggers, night flow analysis and district metered areas (DMAs).

Further, the course will also discuss the pipeline infrastructure condition assessment. asset management, DMA establishment and operation and field leak survey techniques; the customer meterina accuracy. unauthorized and consumption billing and and meter data management; and the customer categorization structures, data analytics and tariff for commercial losses and consumer engagement and complaint handling.



TE0310 - Page 1 of 8





During this interactive course, participants will learn how to develop NRW reduction strategy; the performance indicators and benchmarking, technology for NRW reduction and project management for NRW programs; the human resource and institutional capacity, monitoring, evaluating, auditing and integration with water utility operations; and the sustainable NRW reduction practices covering institutionalizing NRW management, climate change and water efficiency, embedding NRW KPIs in performance reviews and future trends and innovations.

## **Course Objectives**

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain an in-depth knowledge on water loss and revenue, non-revenue water management
- Classify water losses and discuss NRW components, impact of NRW on water utilities and environment and global benchmarks and KPIs
- Explain water balance and components, economic impacts of NRW, measurement and data requirements and regulatory frameworks and standards
- Illustrate leakage detection techniques using acoustic methods, smart pressure sensors and loggers, night flow analysis and district metered areas (DMAs)
- Distinguish relationship between pressure and leakage, pressure zoning and control valves, advanced pressure control technologies and real-time pressure monitoring systems
- Carryout pipeline condition assessment, infrastructure asset management, DMA establishment and operation and field leak survey techniques
- Recognize customer metering and accuracy, unauthorized consumption and billing and meter data management
- Identify customer categorization and tariff structures, data analytics for commercial losses and consumer engagement and complaint handling
- Develop NRW reduction strategy and apply performance indicators and benchmarking, technology for NRW reduction and project management for NRW programs
- Carryout human resource and institutional capacity, monitor, evaluate and audit and integration with water utility operations
- Implement sustainable NRW reduction practices covering institutionalizing NRW management, climate change and water efficiency, embedding NRW KPIs in performance reviews and future trends and innovations

# Exclusive Smart Training Kit - H-STK<sup>®</sup>



Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.



TE0310 - Page 2 of 8





## Who Should Attend

This course provides an overview of all significant aspects and considerations of water loss and revenue, non-revenue water management for water utility managers and engineers, NRW specialists and water loss auditors, operations and maintenance (O&M) personnel, asset and infrastructure managers, water metering and billing professionals, environmental and sustainability officers, GIS and data analysts working on utility networks and those who involved in water utility operations, planning, and management.

#### Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours

#### **Certificate Accreditations**

Haward's certificates are accredited by the following international accreditation organizations: -



British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

# • The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.



TE0310 - Page 3 of 8





## Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:



Mr. Nikolas Karnavos, MSc, BSc, is an International Expert in Water Treatment Technology with over 30 years of extensive experience within the Oil, Gas, Refinery and Petrochemical industries. His expertise widely covers Wastewater Treatment, Oilfield Water Treatment, Best Practice in Sewage & Industrial Wastewater Treatment & Environmental Protection, Treating & Handling Oily Water, Water Chemistry for Power Plant,

Industrial Water Treatment in Refineries & Petrochemical Plants, Water Pollution Control, Permitting & Enforcing Drilling for Groundwater, Hydraulic Modelling, Network Design, Reverse Osmosis Treatment Technology and Water Chlorination System. Further, he is also well-versed in Laboratory Control of a Wastewater Treatment Plant, Environmental Online Analyzers (Air & Water), Gas Chromatography and various instrumental methods of analysis such as Water Analysis & Quality Control, Water and Wastewater Chemical Analysis, Statistical Data and Laboratory Analysis, Gas Analysis, Qualitative Fuel Analysis, Environmental Chemical Analysis, Laboratory Environmental Analysis including Water Quality Testing, Water Testing (ICP & Ion Chromatography), Process Water and Wastewater Effluents, Oily Sludge Treatment, Atomic Absorption and Spectroscopic Methods in Analytical Chemistry, Analytical Method Development and Methods of Environmental Measurements (Water, Air, Liquid & Solid Wastes).

Mr. Karnavos was the Laboratory Manager of Exxon wherein he was responsible for ISO 17025 certification, upgrading laboratory equipment in refinery, petrochemical and polypropylene plants, upgrading and extending LIMS, handling the transition plan process of the existing laboratory to a new as well as formulating and executing the plans for applied research and technology transfer. During his career life, he had occupied several significant positions as the Laboratory Analyst, Laboratory Professor, Quality Manager, Partner & Managing Director, Environmental Engineer, Process Engineer, Environmental Management Corporate Department Head and Quality Control & Plastics Application Head with different international companies like the AQUACHEM, Hellenic Petroleum (EXXON) and Technological Institute.

Mr. Karnavos holds a Master degree in Chemical Engineering and Bachelor degrees in Mechanical Engineering and Petroleum Engineering from the Aristotelian University of Thessaloniki, Technological Institute and KATEE Kavala respectively. He is an Accredited Trainer for the Organization for the Certifications & Vocational Guidance (EOPPEP) and an Accredited Environmental Auditor from the IEMA. Further, he is the President of Greek Association of Chemical Engineers and an active member of various professional engineering bodies internationally like the IEMA, Technical Chamber of Greece and the CONCAWE. He also published numerous books and scientific papers and delivered various trainings and workshops worldwide.



TE0310 - Page 4 of 8







## Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures 20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

## Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK<sup>®</sup> (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

## Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

## Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

| Day 1:      | Monday, 28 <sup>th</sup> of July 2025                                      |
|-------------|----------------------------------------------------------------------------|
| 0730 – 0800 | Registration & Coffee                                                      |
| 0800 - 0815 | Welcome & Introduction                                                     |
| 0815 - 0830 | PRE-TEST                                                                   |
| 0830 - 0930 | Overview of Water Losses & NRW                                             |
|             | Definition and Classification of Water Losses • Understanding NRW          |
|             | Components • Impact of NRW on Water Utilities and Environment • Global     |
|             | Benchmarks and KPIs                                                        |
| 0930 - 0945 | Break                                                                      |
|             | Water Balance & Components                                                 |
| 0945 – 1030 | IWA Standard Water Balance Model • Authorized Consumption versus Losses    |
|             | Real versus Apparent Losses  Best Practices in Quantification              |
|             | Economic Impacts of NRW                                                    |
| 1030 - 1130 | Revenue Loss Due to Unbilled Water • Cost-Benefit Analysis of NRW          |
|             | Reduction • Social and Environmental Costs • Economic Level of Leakage     |
|             | (ELL)                                                                      |
| 1130 - 1230 | Measurement & Data Requirements                                            |
|             | Metering Hierarchy and Data Collection • Data Validation and Normalization |
|             | • Importance of Accurate Customer Metering • SCADA and AMR Data            |
|             | Integration                                                                |
| 1230 - 1245 | Break                                                                      |



TE0310 - Page 5 of 8





| 1245 - 1330 | Regulatory Frameworks & Standards                                                                |
|-------------|--------------------------------------------------------------------------------------------------|
|             | International Best Practices (IWA, AWWA) • Governmental Policies and                             |
|             | <i>Compliance</i> • <i>Reporting and Auditing Requirements</i> • <i>Strategic Importance for</i> |
|             | National Goals                                                                                   |
| 1330 - 1420 | Case Studies: Successful NRW Programs                                                            |
|             | Global Examples: Singapore, Germany, UAE • Lessons Learned from Low-                             |
|             | NRW Countries • Urban versus Rural NRW Strategies • Qatari Context:                              |
|             | Kahramaa Challenges and Targets                                                                  |
| 1420 - 1430 | Recap                                                                                            |
|             | <i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>           |
|             | Topics that were Discussed Today and Advise Them of the Topics to be                             |
|             | Discussed Tomorrow                                                                               |
| 1430        | Lunch & End of Day One                                                                           |

| Day 2:      | Tuesday, 29 <sup>th</sup> of July 2025                                                   |
|-------------|------------------------------------------------------------------------------------------|
| 0730 – 0830 | Leakage Detection Techniques                                                             |
|             | Acoustic Methods (Correlators, Ground Mics) • Smart Pressure Sensors and                 |
|             | Loggers • Night Flow Analysis • District Metered Areas (DMAs)                            |
|             | Pressure Management                                                                      |
| 0830 - 0930 | Relationship Between Pressure and Leakage • Pressure Zoning and Control                  |
| 0000 - 0000 | Valves • Advanced Pressure Control Technologies • Real-Time Pressure                     |
|             | Monitoring Systems                                                                       |
| 0930 - 0945 | Break                                                                                    |
|             | Pipeline Condition Assessment                                                            |
| 0945 - 1100 | Pipe Material Deterioration Factors • Leak Localization Using Smart                      |
| 0040 - 1100 | Technologies • GIS Mapping and Asset Tagging • Predictive Maintenance                    |
|             | Tools                                                                                    |
|             | Infrastructure Asset Management                                                          |
| 1100 - 1230 | Asset Inventory and Lifecycle Costing • Rehabilitation Planning and Renewal              |
|             | Rates • Prioritizing High-Risk Areas • Linking Asset Management to NRW                   |
| 1230 - 1245 | Break                                                                                    |
|             | DMA Establishment & Operation                                                            |
| 1245 - 1330 | <i>Principles of Creating DMAs</i> • <i>Boundary Valve Installation and Monitoring</i> • |
| 1240 1000   | Flow and Pressure Monitoring within DMA • Daily Water Balance within                     |
|             | DMAs                                                                                     |
|             | Field Leak Survey Techniques                                                             |
| 1330 - 1420 | Planning Proactive Leak Detection • Mobile Leak Detection Vans • Training                |
|             | Crews on Field Techniques • Recording and Reporting Leaks                                |
| 1420 - 1430 | Recap                                                                                    |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the          |
|             | Topics that were Discussed Today and Advise Them of the Topics to be                     |
|             | Discussed Tomorrow                                                                       |
| 1430        | Lunch & End of Day Two                                                                   |

| Day 3:      | Wednesday, 30 <sup>th</sup> of July 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0730 - 0830 | <i>Customer Metering &amp; Accuracy</i><br><i>Meter Types and Principles (Volumetric, Ultrasonic)</i> • <i>Meter Testing and</i><br><i>Calibration</i> • <i>Meter Selection Criteria</i> • <i>Aging and Under-Registration Issues</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0830 – 0930 | <b>Unauthorized Consumption</b><br>Illegal Connections and Theft Identification • Social Awareness and<br>Enforcement • Use of Smart Metering to Reduce Theft • Case Tracking and<br>Penalties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 1000 MARCELLER ILM MARCELLER I |





| 0930 - 0945 | Break                                                                                     |
|-------------|-------------------------------------------------------------------------------------------|
|             | Billing & Meter Data Management                                                           |
| 0945 – 1100 | Automated Meter Reading (AMR/AMI) • Data Integrity and Analysis •                         |
|             | Meter-to-Cash (M2C) Cycle Optimization • CRM Integration with Metering                    |
| 1100 - 1230 | Customer Categorization & Tariff Structures                                               |
|             | Revenue from Different Consumer Types • Non-Domestic Consumer Metering                    |
|             | <i>Issues • Aligning Tariff with Consumption • Subsidy Impact on NRW</i>                  |
| 1230 - 1245 | Break                                                                                     |
|             | Data Analytics for Commercial Losses                                                      |
| 1245 - 1330 | Using AI/ML for Anomaly Detection • Consumption Pattern Analysis •                        |
|             | <i>Cross-Checking Billing and Flow Data</i> • <i>Geo-Analytics for Identifying Losses</i> |
| 1330 – 1420 | Consumer Engagement & Complaint Handling                                                  |
|             | Role of Customer Service in Reducing Losses • Consumer Education Programs                 |
|             | • Complaint Logging and Resolution System • Feedback Loop into NRW                        |
|             | Strategy                                                                                  |
| 1420 - 1430 | Recap                                                                                     |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the           |
|             | Topics that were Discussed Today and Advise Them of the Topics to be                      |
|             | Discussed Tomorrow                                                                        |
| 1430        | Lunch & End of Day Three                                                                  |
|             |                                                                                           |

| Day 4:      | Thursday, 31 <sup>st</sup> of July 2025                                                       |
|-------------|-----------------------------------------------------------------------------------------------|
| 0730 - 0830 | Developing an NRW Reduction Strategy                                                          |
|             | Setting Realistic Reduction Targets • Phased Implementation Plans •                           |
|             | Stakeholder Engagement • Cost Estimation and Budgeting                                        |
|             | Performance Indicators & Benchmarking                                                         |
| 0830 - 0930 | Key Performance Indicators (KPIs) • Water Loss Index (WLI), Infrastructure                    |
|             | Leakage Index (ILI) • Setting Baseline and Target Metrics • Benchmarking with Other Utilities |
| 0930 - 0945 | Break                                                                                         |
|             | Technology for NRW Reduction                                                                  |
| 0945 - 1100 | Smart Metering and IoT • GIS and Hydraulic Modeling • AI in Leak                              |
|             | Prediction • Digital Twin for Water Networks                                                  |
|             | Project Management for NRW Programs                                                           |
| 1100 - 1230 | Planning Tools and Gantt Charts • Procurement of NRW Technologies •                           |
|             | Contract Management • Quality Assurance & Control                                             |
| 1230 - 1245 | Break                                                                                         |
|             | Human Resource & Institutional Capacity                                                       |
| 1245 1330   | Building Internal Capacity for NRW Teams • Training Programs for                              |
| 1245 - 1550 | Technicians and Engineers • Role of NRW Champions • Institutional Reforms                     |
|             | and Incentives                                                                                |
| 1330 - 1420 | Monitoring, Evaluation & Auditing                                                             |
|             | Setting Up Dashboards and Control Rooms • Periodic Audits and Field                           |
|             | Verifications • Evaluation of Financial Returns • Continuous Improvement                      |
|             | Methodology                                                                                   |
| 1420 - 1430 | Recap                                                                                         |
|             | Using this Course Overview, the Instructor(s) will Brief Participants about the               |
|             | Topics that were Discussed Today and Advise Them of the Topics to be                          |
|             | Discussed Tomorrow                                                                            |
| 1430        | Lunch & End of Day Four                                                                       |



TE0310 - Page 7 of 8

AWS ican Welding Soci

TE0310-07-25|Rev.01|18 May 2025

ICML

UKAS



Haward Technology Middle East

| Day 5:      | Friday, 01 <sup>st</sup> of August 2025                                       |
|-------------|-------------------------------------------------------------------------------|
|             | Integration with Water Utility Operations                                     |
| 0720 0020   | Linking NRW with Asset, Customer and Finance Systems • Role of NRW in         |
| 0750 - 0050 | Business Planning • Sustainability and Resilience • Managing Change within    |
|             | Utilities                                                                     |
|             | Sustainable NRW Reduction Practices                                           |
| 0830 - 0930 | Institutionalizing NRW Management • Climate Change and Water Efficiency       |
|             | • Embedding NRW KPIs in Performance Reviews • Future Trends and               |
|             | Innovations                                                                   |
| 0930 - 0945 | Break                                                                         |
|             | Hands-On Group Exercise: DMA Design                                           |
| 0945 – 1100 | Create a Sample DMA Layout • Meter Placement and Flow Path Analysis •         |
|             | Pressure Zone Planning • Leak Detection and Response Plan                     |
|             | Hands-On Workshop: Water Balance Calculation                                  |
| 1100 – 1230 | Data Collection and Validation • Calculating Annual Water Balance •           |
|             | Identifying Loss Components • Suggesting Mitigation Measures                  |
| 1230 - 1245 | Break                                                                         |
|             | Interactive Case Study Analysis                                               |
| 1745 1345   | Participants Analyze Real-World NRW Data • Identify Key Weaknesses and        |
| 1245 - 1345 | Potential Improvements • Present Solutions to Peer Groups • Feedback and      |
|             | Evaluation                                                                    |
|             | Course Conclusion                                                             |
| 1345 - 1400 | Using this Course Overview, the Instructor(s) will Brief Participants about t |
|             | Topics that were Covered During the Course                                    |
| 1400 - 1415 | POST-TEST                                                                     |
| 1415 - 1430 | Presentation of Course Certificates                                           |
| 1430        | Lunch & End of Course                                                         |

# Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the latest revision of "EPANET" simulators.



# **Course Coordinator**

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org



