

COURSE OVERVIEW EE1127 Testing Techniques for Electrical Assets

<u>Course Title</u>

Testing Techniques for Electrical Assets

Course Date/Venue

October 05-09, 2025/Meeting Plus 9, City Centre Rotana, Doha, Qatar

(30 PDHs)

Course Reference EE1127

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Testing Techniques for Electrical Assets. It covers the importance of electrical testing in asset reliability, critical electrical assets, types of testing and electrical safety in testing operations; the tools that includes testing equipment and the megohmmeter (insulation tester), multimeter, clamp meter, primary and secondary injection kits and HiPot, TTR, VLF, ductor tester, SFRA analyzer; planning and preparing electrical testing, interpret test results and baselines and standards and guidelines in testing; the power cable testing techniques, transformer diagnostic testing, oil-filled transformer oil testing and switchgear and circuit breaker testing.

During this interactive course, participants will learn the insulation testing and dielectric strength, grounding and earth resistance testing, electric motor testing techniques and generator testing and monitoring; the protection relay testing and calibration, primary injection testing of protection circuits, battery and DC system testing and control panel and wiring check; the thermal imaging and infrared thermography, partial discharge (PD) testing, vibration analysis and acoustic testing, online monitoring systems for assets and electrical asset health indices; the root cause analysis using test data, maintenance strategy based on test results and reporting and documentation.

EE1127 - Page 1 of 12

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on testing techniques for electrical assets
- Discuss the importance of electrical testing in asset reliability, critical electrical assets, types of testing and electrical safety in testing operations
- Identify testing equipment and tools that includes the megohmmeter (insulation tester), multimeter, clamp meter, primary and secondary injection kits and HiPot, TTR, VLF, ductor tester, SFRA analyzer
- Plan and prepare electrical testing, interpret test results and baselines and discuss standards and guidelines in testing
- Perform power cable testing techniques, transformer diagnostic testing, oil-filled transformer oil testing and switchgear and circuit breaker testing
- Determine insulation testing and dielectric strength, grounding and earth resistance testing, electric motor testing techniques and generator testing and monitoring
- Carryout protection relay testing and calibration, primary injection testing of protection circuits, battery and DC system testing and control panel and wiring check
- Explain thermal imaging and infrared thermography, partial discharge (PD) testing, vibration analysis and acoustic testing, online monitoring systems for assets and electrical asset health indices
- Develop root cause analysis using test data, maintenance strategy based on test results and reporting and documentation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of testing techniques for electrical assets for electrical engineers, maintenance engineers and technicians, testing and commissioning engineers, asset integrity and reliability engineers, substation and switchgear operators, utility and power plant engineers, electrical safety officers, inspection and compliance officers and other technical staff.

<u>Course Fee</u>

US\$ 6,000 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

EE1127 - Page 2 of 12

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Haward's Certificates are accredited by the following international accreditation organizations:

• **BA**

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. Haward's certificates are internationally recognized and accredited by the British Accreditation Council (BAC). BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

<u>ACCREDITED</u>
<u>The International Accreditors for Continuing Education and Training</u>
<u>(IACET - USA)</u>

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

EE1127 - Page 3 of 12

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ken Steel is a **Senior Electrical & Instrumentation Engineer** with over **30 years** of extensive experience. His expertise widely covers the Introduction to **Solar Energy Systems**, Solar Power System Components and Configuration, Introduction to **Solar** Inverters and Batteries, Understanding **Electrical** Circuits for **Solar** Installations, Hands-On Workshop: Build a Simple Solar Setup, **Solar Energy and Electrical Safety Essentials**, Basic Troubleshooting of **Solar PV Systems**, **Energy Efficiency and Solar Integration** Basics, Step-by-Step **Solar Installation** Practices, **Solar Energy** for Technicians and Field Operators. Further, he is also well-versed in **Process Control Instrumentation**, **Process**

Instrumentation & Control, Process Control, Instrumentation, , Instrumentation for Process Optimization and Control, Process Automation and Instrumentation Systems Integration, Troubleshooting in Process Control Systems, Process Control & Safeguarding, Troubleshooting & Problem Solving, Process Instrumentation and Control Techniques, Troubleshooting Instrumentation and Control Systems, GC Processes Troubleshooting and Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Electrical Motors Testing, Heat Tracing & Insulation Installation & Testing, HV Terminations, High & Low Voltages on Overhead Cranes, HV/MV Cable Splicing, Cable & Over Head Power Line, HV/MV Switchgear, HV Cable Design, Medium & High Voltage Equipment, High Voltage Circuit Breaker Inspection & Repair, High Voltage Power System, HV Equipment Inspection & Maintenance, HV Switchgear Operation & Maintenance, Resin / Heat Shrink & Cold Shrink Joints, HV/LV Equipment, LV & HV Electrical System, Cable Splicing & Termination, High Voltage Electrical Safety, LV, MV & HV Cable Installations & Properties, LV Substation, MV & LV Cable, UPS Systems, MV & LV Direct on Line Motor Drives, MV & LV VSD Motor Drives, MV & LV Soft Starter Motor Drives, LV Two Speed Motor Drives, Underground Transformer Oil Containment Tank, Electrical & Instrumentation Construction Installation, 1500KW, 1000KW, 1752KW Diesel Power Plant Installation, 110KV Overhead Line, 110KV Outdoor Switchgear, 110KV/10KV 6500KVA Transformer, Transformer Substation, 1600KVA 10KV/0.4KV & 2 Off 1000KVA Diesel Generators, 1600KVA 10KV/0.4KV & 1650KVA Diesel Generator, 110KV/35KV/10KV Substation, 110KV/10KV Transformers, 110KV & 2 Off 6KV Overhead Lines, 34.5KV,13.8KV ,4.16KV & 480V Switchgear, 4.16KV & 480V MCC, Transformers & Motor Drives Substations, Diesel Driven Generators, Overhead Cranes, Overhead Cranes & HVAC Units, AC & DC Drives, Data Logger, Electrical, Instrumentation & Mechanical Installation Maintenance, Slab Mills, Pre Heat Ovens, Hydraulic Shears, Stamping Machine, Gearboxes, Rollers, Pumps, Valves, Electro Magnets & Pump House Operation, Boilers Construction And Commissioning, Valve Calibration & Testing, Level Gauges, Pressure & Flow Transmitters Installation & Calibration, Pressure & Leak Testing of Boilers, Leak Testing, SMP, Elect, I&C, F&G, HVAC & Utility Services, Nitrogen Leak Test Operations, Steam Blowing Activities, SMP, Elect, I&C, F&G, HVAC & Utility Services, PTW Issue (PA/AC), Installation & Mechanical Piping and Hydro Testing & Leak Testing of Lines Installation.

During Mr. Steel's career life, he has gained his practical experience through several significant positions and dedication as the **3GP PBF & Boilers SC Commission Support**, **SC Site Execution Superintendent**, **E&I Construction Supervisor**, **Electrical & Instrumentation Supervisor**, **Electrical Technician**, **Construction Support Electrical Engineer**, **E&I Engineer**, **Electrical/Instrumentation Site Supervisor**, **Q.A/Q.C Inspector**, **Electrical/Instrumentation Technician**, **Maintenance Fitter Instrumentation Technician**, **Millwright**, **Apprentice Millwright** and **Senior Instructor/Lecturer** for Tengiz Chevron Oil Kazakhstan, Al Jubail Saudi Arabia, Escravos Delta state Nigeria, Lurgi S.A, SuD Chemie Sasol Catalysts, J C Groenewalds Construction (LTA), Tycon (Goodyear S.A.), Dragline Construction and Iscor Vanderbijlpark.

Mr. Steel has a **Diploma** in **Electronics Mechanic**. Further, he is a **Certified Instructor/Trainer** and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

EE1127 - Page 4 of 12 EE1127-10-25|Rev.00|10 July 2025

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday,05 th of October 2025
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction to Electrical Asset Testing</i> <i>Importance of Electrical Testing in Asset Reliability</i> • Overview of Critical <i>Electrical Assets (Motors, Transformers, Breakers)</i> • Types of Testing: Routine, Type, Diagnostic, Predictive • Testing During Commissioning, Maintenance and Troubleshooting
0930 - 0945	Break
0945 - 1045	Electrical Safety in Testing Operations Electrical Hazards and Shock Prevention • Arc Flash Risk Analysis and PPE • Lockout/Tagout (LOTO) Procedures • Safe Approach Distances and Test Boundaries
1045 - 1145	Testing Equipment & Tools Overview Megohmmeter (Insulation Tester), Multimeter, Clamp Meter • Primary & Secondary Injection Kits • HiPot, TTR, VLF, Ductor Tester, SFRA Analyzer • Calibration and Maintenance of Test Instruments
1145 - 1230	Planning & Preparing for Electrical Testing Test Procedures and Job Plans • Test Equipment Selection and Setup • Permits, Risk Assessments and Job Safety Analysis (JSA) • Documentation and Tagging
1230 - 1245	Break
1245 - 1330	<i>Interpreting Test Results & Baselines</i> <i>Trending versus Absolute Measurements</i> • <i>Establishing Reference Values and</i> <i>Acceptance Limits</i> • <i>Comparing with Standards (IEC, IEEE, NETA)</i> • <i>Data</i> <i>Logging and Software Reporting</i>

EE1127 - Page 5 of 12

Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow 1430 Lunch & End of Day One Day 2: Monday,06 th of October 2025 0730 - 0830 Power Cable Testing Techniques Insulation Resistance Testing (IR) • Very Low Frequency (VLF) Testing • Tan Delta and Partial Discharge Testing • Cable Fault Location and Time Domain Reflectometry (TDR) Transformer Diagnostic Testing Insulation Resistance and Polarization Index (PI) • Transformer Turns Ratio (TTR) Test • Sweep Frequency Response Analysis (SFRA) • Winding Resistance and Excitation Current Tests 0930 - 0945 Break 0945 - 1130 Oilsolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation 1130 - 1230 Switchgear & Circuit Breaker Testing Contact Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM) 1230 - 1245 Break 1330 - 1420 Grounding & Earth Resistance Testing Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks 1420 - 1430 Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1330 - 1420	Standards & Guidelines in Testing NETA, IEEE, IEC Standards for Electrical Testing • Manufacturer's Recommendations and Test Intervals • ANSI/ASTM Test Methods • Regulatory and Insurance Considerations
Day 2: Monday,06 th of October 2025 0730 - 0830 Power Cable Testing Techniques Insulation Resistance Testing (IR) • Very Low Frequency (VLF) Testing • Tan Delta and Partial Discharge Testing • Cable Fault Location and Time Domain Reflectometry (TDR) 0830 - 0930 Transformer Diagnostic Testing Insulation Resistance and Polarization Index (PI) • Transformer Turns Ratio (TTR) Test • Sweep Frequency Response Analysis (SFRA) • Winding Resistance and Excitation Current Tests 0930 - 0945 Break 0945 - 1130 Oil-Filled Transformer Oil Testing Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation 1130 - 1230 Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM) 1230 - 1245 Break 1330 - 1420 Grounding & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements 1330 - 1420 Grounding & Earth Resistance Testing Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks 1420 - 1430 Wising this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Today and A	1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
0730 - 0830 Power Cable Testing Techniques Insulation Resistance Testing (IR) • Very Low Frequency (VLF) Testing • Tan Delta and Partial Discharge Testing • Cable Fault Location and Time Domain Reflectometry (TDR) 0830 - 0930 Transformer Diagnostic Testing Insulation Resistance and Polarization Index (PI) • Transformer Turns Ratio (TTR) Test • Sweep Frequency Response Analysis (SFRA) • Winding Resistance and Excitation Current Tests 0930 - 0945 Break 0945 - 1130 Oil-Filled Transformer Oil Testing Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation 1130 - 1230 Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance (Ductor Test) • Dynamic Resistance Measurement (DRM) 1230 - 1245 Break 1245 - 1330 Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements 1330 - 1420 Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks 1420 - 1430 Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1430	Lunch & End of Day One
0730 - 0830Insulation Resistance Testing (IR) • Very Low Frequency (VLF) Testing • Tan Delta and Partial Discharge Testing • Cable Fault Location and Time Domain Reflectometry (TDR)0830 - 0930Transformer Diagnostic Testing Insulation Resistance and Polarization Index (PI) • Transformer Turns Ratio (TTR) Test • Sweep Frequency Response Analysis (SFRA) • Winding Resistance and Excitation Current Tests0930 - 0945Break0945 - 1130Oil-Filled Transformer Oil Testing Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation1130 - 1230Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM)1230 - 1245Break1245 - 1330Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Fal-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Today and Advise Them of the Topics to be Discussed Today and Advise Them of the Topics to be Discussed Today and Advise Them of the Topics to be Discussed Today and Advise Them of the Topics to be Discussed	Day 2:	
0830 - 0930Insulation Resistance and Polarization Index (PI) • Transformer Turns Ratio (TTR) Test • Sweep Frequency Response Analysis (SFRA) • Winding Resistance and Excitation Current Tests0930 - 0945Break0945 - 1130Oil-Filled Transformer Oil Testing Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation1130 - 1230Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM)1230 - 1245Break1245 - 1330Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Vithstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks1420 - 1430Wising this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0730 – 0830	Insulation Resistance Testing (IR) • Very Low Frequency (VLF) Testing • Tan Delta and Partial Discharge Testing • Cable Fault Location and Time Domain
0945 - 1130Oil-Filled Transformer Oil Testing Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation1130 - 1230Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM)1230 - 1245Break1245 - 1330Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Grounding & Earth Resistance Testing Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0830 – 0930	Insulation Resistance and Polarization Index (PI) • Transformer Turns Ratio (TTR) Test • Sweep Frequency Response Analysis (SFRA) • Winding Resistance
0945 - 1130Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and Interpretation1130 - 1230Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM)1230 - 1245Break1245 - 1330Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Grounding & Earth Resistance Testing Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks1420 - 1430Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0930 - 0945	Break
Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement (DRM)1230 - 1245Break1245 - 1330Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Grounding & Earth Resistance Testing Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks1420 - 1430Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	0945 - 1130	Dissolved Gas Analysis (DGA) • Moisture Content and Dielectric Strength • Furan Analysis for Paper Degradation • Oil Quality Assessment and
1245 - 1330Insulation Testing & Dielectric Strength Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Grounding & Earth Resistance Testing 	1130 - 1230	Switchgear & Circuit Breaker Testing Contact Resistance (Ductor Test) • Timing Analysis (CB Timing Test) • Insulation Resistance and HiPot Tests • Dynamic Resistance Measurement
1245 - 1330Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements1330 - 1420Grounding & Earth Resistance Testing Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks1420 - 1430Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed 	1230 - 1245	Break
1330 - 1420Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil Resistivity (Wenner Method) • Ground Grid Continuity and Bonding Checks1420 - 1430Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1245 - 1330	Megger Testing for Motors, Cables, Transformers • Spot Reading, Timed Testing, and Step Voltage Methods • Dielectric Withstand (HiPot) Testing Principles • Capacitance and Dissipation Factor Measurements
1420 – 1430 Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	1330 - 1420	Fall-of-Potential Method • Clamp-On Ground Resistance Testing • Soil
1430 Lunch & End of Day Two	1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	1430	Lunch & End of Day Two

Day 3:	Tuesday,07 th of October 2025
0730 - 0830	<i>Electric Motor Testing Techniques</i> <i>Insulation Resistance and Polarization Index</i> • <i>Surge Comparison and Winding</i> <i>Resistance Tests</i> • <i>Rotor Bar, Bearing and Core Testing</i> • <i>Offline versus Online</i> <i>Mater Diagnostice</i>
0830 - 0930	Motor Diagnostics Generator Testing & Monitoring Stator and Rotor Winding Testing • Excitation System Diagnostics • Synchronization Checks • Thermal Monitoring and Trending
0930 - 0945	Break

EE1127 - Page 6 of 12 EE1127-10-25|Rev.00|10 July 2025

0945 – 1130	Protection Relay Testing & Calibration
	Functional Testing of Protective Relays • Secondary Injection Testing • Relay Coordination and Settings Validation • Testing Distance, Overcurrent and Differential Relays
	Differential Relays
1130 - 1230	Primary Injection Testing of Protection Circuits Purpose and Procedure of Primary Injection • CT and Breaker Coordination Checks • Verifying Trip Curves and Response Time • Current Injection Setup and Interpretation
1230 - 1245	Break
1245 - 1330	Battery & DC System Testing Battery Impedance Testing • Discharge and Capacity Tests • Float Voltage and Specific Gravity • UPS Systems Inspection and Alarms
1330 - 1420	Control Panel & Wiring Check Continuity and Point-to-Point Testing • Terminal Torque and Connection Checks • Functionality of Control Circuits • Signal Testing and Verification
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4:	Wednesday,08 th of October 2025
	Thermal Imaging & Infrared Thermography
0730 - 0830	Principles of IR Scanning for Hot Spots • Interpreting Thermal Images and
0750 - 0850	Temperature Anomalies • Common Issues: Loose Contacts, Overloads • IR
	Inspection Program and Reporting
	Partial Discharge (PD) Testing
0830 - 0930	PD Basics and Failure Modes • Online versus Offline PD Detection • Test
	Methods: Ultrasonic, TEV, HFCT • PD Monitoring for Cables and Switchgear
0930 - 0945	Break
	Vibration Analysis & Acoustic Testing
0945 - 1130	Detecting Mechanical and Electrical Issues • Bearing Faults, Misalignment
0010 1100	Rotor Imbalance • Ultrasonic Leak Detection • Correlating Vibration Data with
	Electrical Testing
	Online Monitoring Systems for Assets
1130 - 1230	Condition Monitoring versus Time-Based Maintenance • Online IR, PD
1100 1200	Moisture Sensors • Remote Data Acquisition and SCADA Interface • Alarn
	Setting and Threshold Configuration
1230 - 1245	Break
	Electrical Asset Health Indices
1245 - 1330	Defining and Scoring Asset Health • Risk-Based Maintenance Prioritization
1210 1000	Integration with CMMS or EAM Systems • Example Dashboards and KP
	Visualization
	Root Cause Analysis Using Test Data
1330 - 1420	Data Correlation Across Test Results • Identifying Recurring Failure Patterns
1000 1120	Linking Test Failures to Environmental or Operational Causes • Reporting
	Findings and Recommending Corrective Actions
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about th
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5:	Thursday,09 th of October 2025
	Practical Hands-On Demonstration (Lab/Field)
0730 - 0830	Insulation Resistance and PI Testing • Breaker Contact Resistance and Timing
0750 - 0050	Tests • Cable VLF and TDR Testing Demo • Relay Testing Using Secondary
	Injection
	Case Studies from Industrial Plants
0830 - 0930	Transformer Failure Due to Poor Oil Condition • Mis-Coordinated Relay
0000 0000	Tripping • Motor Insulation Breakdown During Operation • Arc Flash Incident
	Linked to Undetected PD
0930 - 0945	Break
	Maintenance Strategy Based on Test Results
0945 - 1100	Test Result Interpretation for Scheduling PM/CM • Integrating Testing with
	Predictive Maintenance • Deciding Repair versus Replace • Planning
	Shutdowns Based on Risk Indicators
	Reporting & Documentation
1100 – 1200	Test Report Formats and Templates • Compliance Documentation (QA/QC,
1000 1017	Audit) • Digital Tools for Documentation • Archiving and Data Analytics
1200 - 1215	Break
	Course Review & Final Assessment
1215 – 1345	Recap of All Testing Techniques • Interactive Q&A and Group Discussions •
	Final Written or Practical Test • Feedback and Evaluation
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Simutech Troubleshooting Electrical Circuits V4.1", Power World" and "ETAP software".

EE1127 - Page 10 of 12

Course Coordinator

Reem Dergham, Tel: +974 4423 1327, Email: reem@haward.org

