

COURSE OVERVIEW ME0007 Vapor Recovery Unit System

Course Title

Vapor Recovery Unit System

Course Date/Venue

April 20-24, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

ME0007

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and an up-to-date overview of vapor recovery engineering. It covers the vapor control systems and how equipment works; the hydrocarbon vapor adsorption-absorption process with dry vacuum pump, absorber tanks, piping, venting systems and condensate collection; the liquid ring VRU systems, vacuum booster blower and equipment failure patterns; the various approaches to machinery troubleshooting, troubleshooting faults and applying corrective action; and the product loading pumps, dry vacuum pump, rich absorbent return pump and liquid ring vacuum pump.

During this interactive course, participants will learn the seal fluid cooler, separator, packing, mechanical seals and seal support systems; the mechanical seal failure analysis, troubleshooting, maintenance and repair as well as bearing care and maintenance; the couplings and alignment, electrical components and operation and instrumentation of VRU's; and the continuous emission monitoring system and vapor watch-enhanced maintenance package records system and preventive maintenance for lubrication.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques on the operation, maintenance and troubleshooting of vapor recovery unit (VRU) system
- Discuss vapor control systems and how equipment works
- Determine hydro-carbon vapor adsorption-absorption process with dry vacuum pump as well as absorber tanks, piping, venting systems and condensate collection
- Recognize liquid ring VRU systems, vacuum booster blower and equipment failure patterns
- Carryout various approaches to machinery troubleshooting, troubleshooting faults and applying corrective action
- Identify product loading pumps, dry vacuum pump, rich absorbent return pump and liquid ring vacuum pump
- Explain seal fluid cooler, separator, packing, mechanical seals and seal support systems
- Employ mechanical seal failure analysis, troubleshooting, maintenance and repair as well as bearing care and maintenance
- Describe couplings and alignment, electrical components and operation and instrumentation of VRU's
- Apply continuous emission monitoring system and vapor watch-enhanced maintenance package records system as well as preventive maintenance for lubrication

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of vapor recovery unit system for engineers, operators, regulatory personnel and other technical staff who deal with vapor recovery or vapor combustion equipment for petroleum distribution facilities in their daily operation.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

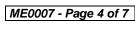
Course Instructor

This course will be conducted by the following instructor. However, we have the right to change the course instructor prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience. His wide expertise includes Compressors Maintenance & Troubleshooting, Screw Compressor MK/WRV Operation Maintenance & Troubleshooting, Piping & Pipeline, Maintenance, Repair, Shutdown. Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive & Preventive

Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Sub-contractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.


Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master's and Bachelor's degree in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) a Certified Instructor/Trainer and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 20th of April 2025

	Duy 1.	monday, 20 Or April 2020
	0730 - 0800	Registration & Coffee
Ī	0800 - 0815	Welcome & Introduction
Ī	0815 - 0830	PRE-TEST
	0830 - 0930	Introduction
		Overview of Vapor Control Systems• Understanding How Equipment Works
	0930- 0945	Break
	0945 - 1030	Hydro-Carbon Vapour Adsorption-Absorption Process with Dry Vacuum
		Pump
	1030 - 1130	Absorber Tanks-Piping- Venting Systems
	1130 - 1230	Condensate Collection
	1230 - 1245	Break
	1245 – 1420	Liquid Ring VRU Systems
		Adsorption – Absorption Process with Liquid Ring Pump
	1420 - 1430	Recap
	1430	Lunch & End of Day One

Day 2: Tuesday, 21st of April 2025

-	Vacuum Booster Blower Overview
0730 - 0930	Rotors • Balancing • Rotor Dynamics • Impellers • Casings •
0730 - 0930	Troubleshooting & Preventive Maintenance for Compressors • Bearings •
	Seals: Labyrinths, Oil Seals & Self Acting Gas Seals • Couplings • Controls
0930 - 0945	Break
	Equipment Failure Patterns
0945 - 1100	Materials Selection • Types of Corrosion • Bath-Tub Curve • Actual
	Equipment Failure Patterns • Actions to Minimize Failure Effect
	Basic Approaches to Machinery Troubleshooting
1100 - 1200	Examples from Recent Failure Incidents Attributed to Design Defects •
	Processing & Manufacturing Deficiencies
1200 – 1230	Case Studies

1230 - 1245	Break
1245 – 1315	Troubleshooting Faults & Applying Corrective Action
1243 - 1313	Equipment Performance Monitoring • Vibration Analysis • Fast Fault Finding
	Product Loading Pumps Overview
1315 - 1400	Centrifugal Pump Theory • Operating Characteristics • Centrifugal • Pump
	Operation ● Cavitation & NPSH
1400 – 1420	Dry Vacuum Pump
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Wednesday, 22 nd of April 2025		
0730 - 0930	Rich Absorbent Return Pump	
0930 - 0945	Break	
0945 - 1030	Liquid Ring Vacuum Pump	
1030 - 1100	Seal Fluid Cooler	
1100 - 1130	Seperator	
	Packing & Mechanical Seals	
1120 1220	Compression Packing • Molded (Automatic) Packing • Basic Principles of	
1130 – 1230	Mechanical Seals • Face Materials • Secondary Seal Materials • Single	
	Mechanical Seals • Single Mechanical Seal • Flushing Plans	
1230 - 1245	Break	
	Seal Support Systems	
1245 1420	Dual Sealing Systems & Flushing Plans • API 682 Reference Guide • Gas	
1245 – 1420	Barrier Seal Technology for Pumps • Support Systems for Dry Gas (Self Acting)	
	Compressor Seals • Mechanical Seal Selection Strategies	
1420 - 1430	Recap	
1430	Lunch & End of Day Three	

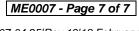
Day 4:	Thursday, 23 rd of April 2025
	Mechanical Seal Failure Analysis & Troubleshooting
0730 - 0930	Failure Analysis • Mechanical Seal Troubleshooting • Determining Leakage
	Rates • Ascertaining Seal Stability
0930 - 0945	Break
	Mechanical Seal Maintenance & Repair
0945 - 1100	Bellows Seal Repair • Cartridge Seal Installation & Management • Seal Face
	Care
	Bearing Care & Maintenance
1100 – 1230	Basic Bearing Concepts • Bearing Classifications • Bearing Care &
	Maintenance • Lubrication Management Break
1230 – 1245	Break
	Couplings & Alignment
1245 – 1315	Purpose of Couplings • Types of Couplings • Alignment Methods •
	Foundation & Grouting Guidelines
1315 – 1400	Electrical Components & Operation
1400 – 1420	Instrumentation of VRUs
1420 - 1430	Recap
1430	Lunch & End of Day Four

Friday, 24th of April 2025 Dav 5:

Day J.	Triday, 24 Or April 2023
0730 - 0830	Continuous Emission Monitoring System
	Vapor Watch-enhanced Maintenance Package Records System Data
0830 - 0930	Pressures, Temperatures, Flows & other Vapor Control Parameters & can be
	Configured to Output Useful Reports on System Performance.
0930 - 0945	Break
0045 1100	Preventive Maintenance-Lubrication
0945 – 1100	Comparative Viscosity • Classifications
	Preventive Maintenance-Lubrication (cont'd)
1100 - 1230	Cost of Poor Lubrication • Fundamentals-Oil & Grease • Storage & Handling
	Methods
1230 – 1245	Break
1245 1245	Preventive Maintenance
1245 – 1345	General Philosophy • Equipment Sparing Factor & Maintenance Approach
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-


<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

