

<u>COURSE OVERVIEW FE0190</u> <u>Pipeline Inspection, Testing & Integrity Assessment</u> <u>Defect Assessment in Pipelines (Practical Aspects)</u>

Course Title

Pipeline Inspection, Testing & Integrity Assessment: Defect Assessment in Pipelines (Practical Aspects)

Course Date/Venue

Session 1: April 13-17, 2025/Business Meeting, Crowne Plaza Al Khobar, Al Khobar, KSA

Session 2: November 16-20, 2025/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

BAG

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This is an in-depth course on the practical aspects of pipeline integrity, including corporate objectives, risk, planning integrity programs, internal inspection tools, anomaly identification and analysis, repair, coating, and pressure testing. Participants will be introduced to the technical basis for determining pipeline integrity.

This course will provide information, reinforced by case studies and exercises on pipeline defects, such as corrosion, cracking and third party damage. Methods will be discussed that can be used to make decisions on whether defects are fit for service.

The course will review the various repair techniques, their advantages and shortcomings and the logic to be followed in making repair decisions and selecting the applicable repair.

In addition, pressure testing will be studied, including an exercise based on an actual hydrostatic pressure test.

FE0190 - Page 1 of 7

FE0190-10-23|Rev.317|09 January 2025

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply the practical aspects of pipeline integrity, including corporate objectives, risk, planning integrity programs, internal inspection tools, anomaly identification and analysis, repair, coating, and pressure testing
- Analyze pipeline design, construction and maintenance vs. integrity and identify the threats to buried pipeline's integrity
- Define time dependent defects theory and differentiate between various types and forms of corrosion on basis of internal and external
- Develop integrity management program and list the integrity management strategies and internal inspection tools
- Perform external surveys, pressure and leak testing and pipeline rehabilitation and repair techniques
- Verify the integrity of an old pipeline and report quality control

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of the practical aspects of pipeline integrity for engineers, inspectors and for those who are responsible for the inspection, testing, integrity, defect assessment, maintenance and repair of pipelines.

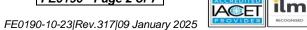
Training Methodology

This interactive training course includes the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Workshops & Work Presentations
- 30% Case Studies & Practical Exercises
- 20% Software, Simulators & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee


US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

FE0190 - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** * BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

FE0190 - Page 3 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Steve Magalios, CEng, PGDip (on-going), MSc, BSc, is a **Survey & Pipeline Engineer** with almost **40 years** of extensive **On-shore/Offshore** experience in the **Oil & Gas**, **Construction**, **Refinery** and **Petrochemical** industries. His expertise widely covers in the areas of GIS, ArcInfo, ArcView, GIS, Spatial Analysis & Modeling, Geographical Information System **(GIS)**, **Pipeline** Operation & Maintenance, **Pipeline** Systems, **Pipeline** Design & Construction, **Pipeline** Repair Methods, **Pipeline** Engineering, Pipeline Integrity Management System **(PIMS)**, **Pipeline** Pigging, Piping & Pipe Support Systems, **Piping** Systems & Process

Equipment, **Piping** System Repair & Maintenance, **Piping** Integrity Management, Computer Aided Design (CAD), Building & Road Design Skills, Civil Engineering Design, Structural Reliability Engineering, Road Construction & Maintenance, Concrete Structures & Building Rehabilitation, Reinforced Concrete Structures Protection, Geosynthetics & Ground Improvement Methods, Blueprint Reading & Interpretation, Blue Print Documentation, Mechanical Drawings, P&ID, Flow Diagram Symbols, Land Surveying & Property Evaluation, Cartographic Representation, Soil Classification, Cadastral Surveying & Boundary Definition, Project Engineering & Design, Construction Management, Project Planning & Execution, Site Management, Site Supervision, Effective Resource Management, Project Evaluation, FEED Management, EPC Projects Design, Project Completion & Workover, Quality Control and Team Management. He is also well-versed in Lean & Sour Gas, Condensate, Compressors, Pumps, Flare Knockout Drum, Block Valve Stations, New Slug Catcher, Natural Gas Pipeline & Network, Scraper Traps, Burn Pits, Risk Assessment, HSE Plan & Procedures, Quality Plan & Procedures, Safety & Compliance Management, Permit-to-Work Issuer, ASME, API, ANSI, ASTM, BS, NACE, ARAMCO & KOC Standards, MS Office tools, AutoCAD, STAAD-PRO, Autodesk Map and various programming languages such as FORTRAN, BASIC and AUTOLISP. Currently, he is the Chartered Professional Surveyor Engineer & Urban-Regional Planner wherein he is deeply involved in providing exact data, measurements and determining properly boundaries. He is also responsible in preparing and maintaining sketches, maps, reports and legal description of surveys.

During his career, Mr. Magalios has gained his expertise and thorough practical experience through challenging positions such as a **Project Site Construction Manager**, **Construction Site Manager**, **Project Manager**, **Deputy PMS Manager**, **Head of the Public Project Inspection Field Team**, **Technical Consultant**, **Senior Consultant**, **Consultant/Lecturer**, **Construction Team Leader**, **Lead Pipeline Engineer**, **Project Construction Lead Supervising Engineer**, **Lead Site Engineer**, **Senior Site Engineer Lead Engineer**, **Senior Site Engineer**, **Senior Site**

Mr. Magalios is a **Registered Chartered Engineer** and has **Master** and **Bachelor** degrees in **Surveying Engineering** from the **University of New Brunswick**, **Canada** and the **National Technical University of Athens**, **Greece**, respectively. Further, he is currently enrolled for **Post-graduate** in **Quality Assurance** from the **Hellenic Open University**, **Greece**. He has further obtained a Level 4B Certificates in Project Management from the National & Kapodistrian University of Athens, Greece and Environmental Auditing from the Environmental Auditors Registration Association (EARA). Moreover, he is a **Certified Instructor/Trainer**, a **Chartered Engineer** of Technical Chamber of Greece and has delivered numerous trainings, workshops, seminars, courses and conferences internationally.

FE0190 - Page 4 of 7

Course Program

The following program is planned for this course. However, the course Instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	<i>Introduction</i> <i>Pipeline Integrity Assessment – Practical Aspects – Course Overview</i> • <i>Corporate</i> <i>Policies</i> • <i>Regulation</i> • <i>Standard Practices</i>
0930 - 0945	Break
0945 - 1045	Pipeline Design, Construction & Maintenance vs. Integrity Pipeline Design
1045 - 1215	Pipeline Design, Construction & Maintenance vs. Integrity (cont'd) Operation • Economics
1215 – 1230	Break
1230 - 1420	<i>Threats to Buried Pipeline's Integrity</i> <i>Time Dependent</i> • <i>Time Independent</i> • <i>Stable</i>
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0930	Time Dependent Defects Theory
	Corrosion Principles • Corrosion Thermodynamics • Corrosion Kinetics •
	Corrosion Rate Expressions
0930 - 0945	Break
0945 - 1045	Types & Forms of Corrosion (Internal & External)
	Corrosion Monitoring • Corrosion Protection (Including Cathodic Protection) •
	Internal Corrosion Modelling & Risk Assessment • Fatigue – Heavy
	Fouling/Clogging • Time Independent & Stable Factors
1045 - 1215	Integrity Management Program Development
	Integrity Management Strategies • Main Factors Affecting Pipeline Integrity •
	Integrity Management Program Development
1215 – 1230	Break
1230 - 1420	Internal Inspection Tools
	Types of Internal Inspection Tools • Preparing to Inspect • Data Assessment •
	Inspection Reports • Other Issues
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

FE0190 - Page 5 of 7

Day 3

0730 – 0930	External Surveys-Pipeline Integrity & Electrical Surveys Prioritisation • Methods & Techniques • Interpretation & Use of the Results • Innovation Aspects
0930 - 0945	Break
0945 - 1045	Pressure & Leak Testing The Purpose of Hydro Test • Theory • Designing a Pressure Test • How to Conduct a Hydro Test
1045 - 1215	Practical Aspects & Case HistoriesMicrobial Corrosion • A.C. Corrosion • Stray Current Corrosion • StressCorrosion Cracking
1215 - 1230	Break
1230 - 1420	Pipeline Rehabilitation - Repair Techniques
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

Day 7	
0730 - 0930	Geological Aspects
	Aspects Tied with the Pipeline
0930 - 0945	Break
0945 - 1045	Verifying the Integrity of an Old Pipeline
	A Case History
1045 - 1215	Remote Monitoring & Control of Cathodic Protection Systems
1215 – 1230	Break
1230 - 1420	Quality Control - Reporting
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5

Duyo	
0730 - 0930	Overall Review
0930 - 0945	Break
0945 - 1100	Exercises & Testing
1100 – 1200	Exercises & Testing (cont'd)
1200 – 1215	Break
1215 – 1400	Summary, Open Forum, Course Conclusion & Closing
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

FE0190 - Page 6 of 7

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0190 - Page 7 of 7

FE0190-10-23|Rev.317|09 January 2025