

COURSE OVERVIEW FE0111 Metallurgical Laboratory Failure Examination for Refinery

Course Title

Metallurgical Laboratory Failure Examination for Refinery

Course Date/Venue

July 06-10, 2025/Florentine Meeting Room, The H Hotel, Dubai, UAE

Course Reference FE0111

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learned will be applied using our state-ofthe-art simulators

This course is designed to provide participants with a detailed and up-to-date overview of Metallurgical Laboratory Failure Examination for Refinery. It covers the refinery material failures and the importance of failure analysis in safety and cost management; the principles of failure analysis; the step-by-step failure investigation process and documentation and reporting practices; the metallurgical properties of refinery materials, microstructural influences on failure and the effects of temperature, pressure, and corrosive environments; the classification of failures, and failure analysis toolkit; the corrosion mechanisms in refineries.

Further, the course will also discuss the hightemperature corrosion, hydrogen damage, wear and erosion mechanisms and stress corrosion cracking (SCC); the basics of fracture surface analysis and the overload, fatique, and brittle fractures; the microstructural analysis, chemical analysis techniques, residual stress analysis, and nondestructive examination (NDE) for failure analysis; the root cause analysis methodologies covering fault tree analysis (FTA), ishikawa (fishbone) diagrams and five whys technique; and the mechanical failures in refinery equipment, welding and fabrication defects and failures in specific refinery units.

FE0111 - Page 1 of 9

During this interactive course, participants will learn the failure prevention strategies comprising of material selection and design considerations, process control and monitoring, inspection and maintenance best practices; the repair and remediation methods and developing failure analysis reports; the continuous improvement in asset integrity through learning from past failures, integrating failure analysis into asset management, and collaboration with design and operation teams and refinery best practices for integrity management; and the emerging trends in failure analysis consisting of AI and machine learning in failure prediction, advances in NDE technologies, industry 4.0 and digital twins and future challenges and opportunities.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain comprehensive knowledge on metallurgical laboratory examination for • refinery
- Identify refinery material failures and the importance of failure analysis in safety and cost • management
- Discuss the principles of failure analysis and apply the step-by-step failure investigation process as well as documentation and reporting practices
- Recognize metallurgical properties of refinery materials, microstructural influences on failure and the effects of temperature, pressure, and corrosive environments
- Classify failures, apply failure analysis toolkit and discuss corrosion mechanisms in • refineries
- Determine high-temperature corrosion, hydrogen damage, wear and erosion mechanisms and stress corrosion cracking (SCC)
- Explain the basics of fracture surface analysis and identify overload, fatigue, and brittle • fractures
- Employ microstructural analysis, chemical analysis techniques, residual stress analysis, • and nondestructive examination (NDE) for failure analysis
- Carryout root cause analysis methodologies covering fault tree analysis (FTA), ishikawa • (fishbone) diagrams and five whys technique
- Assess mechanical failures in refinery equipment, welding and fabrication defects and failures in specific refinery units
- Apply failure prevention strategies comprising of material selection and design considerations, process control and monitoring, inspection and maintenance best practices
- Employ repair and remediation methods and develop failure analysis reports
- Apply continuous improvement in asset integrity through learning from past failures, • integrating failure analysis into asset management, collaboration with design and operation teams and refinery best practices for integrity management
- Discuss the emerging trends in failure analysis consisting of AI and machine learning in • failure prediction, advances in NDE technologies, industry 4.0 and digital twins and future challenges and opportunities

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

FE0111 - Page 2 of 9

Who Should Attend

The course provides an overview of all significant aspects and considerations of metallurgical laboratory failure examination for refinery for materials engineers, corrosion engineers, process engineers, refinery management/executives, refinery operations and maintenance managers, metallurgists, health, safety, and environmental (HSE) professionals and other technical staff.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

FE0111 - Page 3 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Professor Martin Glu, PhD, MSc, BSc, is a Senior Metallurgical Engineer with over 30 years of extensive teaching/training experience. His wide experiences cover in the areas of Materials Selection & Failure Analysis, Welding Metallurgy, Heat Treatment Techniques, Metal Extractions & Degradation, Cathodic Protection & Alloy Selection, Pipeline Materials & Integrity Management, Failure Analysis & Material Testing, Non-destructive Examination (NDE), Welding & Fabrication Defects, Failure Prevention

Strategies, Composite Failure, Failure Investigation Process, Wear & Erosion Mechanisms, Corrosion Mechanisms, High-Temperature Corrosion, Corrosion Control & Prevention, Corrosion Monitoring, Stress Corrosion Cracking (SCC), Corrosion Analysis Techniques, Manufacturing Processes, Filament Winding, Fractography, Fracture Mechanics, Fracture Surface Analysis, Material Science & Engineering, Refinery Material Failures, Manufacturing Techniques of Material Systems, Material Inspection & Quality Control, Material Characterization & Testing, Root Cause Analysis Methodologies, Fault Tree Analysis (FTA), Metallurgy Heat Treatment of Metallic Structures, Metal Foam Structures, Composite Science, Composite Materials Design & Processing, Nano & Micro-Structured Composites, Reinforced Plastics & Composites, Polymer Composites and High Performance Polymers.

During his career life, Professor Glu has gained his practical and field experience through his various significant positions and dedication as the **Technical Manager**, **Metallurgical Engineer**, **Professor**, **Associate Professor**, **Assistant Professor**, **Senior Representative**, **Researcher** and **Graduate Research Assistant** for various universities such as the Innoma Innovative Materials Techonoligies Inc, İzmir Institute of Technology, University of Delaware.

Professor Glu has a PhD and Master's degree in Materials Science and Engineering from the University of Delaware, USA and a Bachelor's degree in Metallurgical Engineering. Further, he is a Certified Instructor/Trainer, an Honorary Member of Composite Manufacturers Association, a Board Member of Aviation & Space Cluster Association and a Member of American Society of Materials (ASM). He has further received various awards and honors, published and presented numerous papers and journals and delivered trainings, seminars, courses, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons

FE0111 - Page 4 of 9

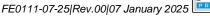
FE0111-07-25|Rev.00|07 January 2025

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.


Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday 06 th of July 2025
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Refinery Material Failures Common Failure Modes in Refineries • Case Studies of Significant Refinery Failures • Importance of Failure Analysis in Safety & Cost Management • Introduction to Relevant Standards (API, ASTM)
0930 - 0945	Break
0945 - 1100	Principles of Failure AnalysisDefinition & Objectives • The Step-By-Step Failure Investigation Process • Role ofMultidisciplinary Teams • Documentation & Reporting Practices
1100 - 1200	Material Properties & BehaviorMetallurgical Properties of Refinery Materials • Microstructural Influences onFailure • Effects of Temperature, Pressure, & Corrosive Environments • CaseStudy Analysis
1200 - 1230	Classification of Failures Ductile versus Brittle Failures • Fatigue & Creep Mechanisms • Stress Corrosion Cracking (SCC) • Hydrogen-Induced Damage
1230 - 1245	Break
1245 - 1330	Failure Analysis ToolkitOverview of Metallurgical Lab Equipment • Optical Microscopy & ScanningElectron Microscopy (SEM) • Energy-Dispersive X-Ray Spectroscopy (EDS) •Mechanical Testing Methods (e.g., Tensile, Hardness, Impact)
1330 - 1420	Hands-On Session: Failure Analysis WorkflowDemonstration of Specimen Preparation • Introduction to Microscopy for FailureEvaluation • Discussion on Initial Findings & Hypothesis Formulation
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

FE0111 - Page 5 of 9

ilm

IACET

Day 2:	Monday, 07 th of July 2025
0730 - 0830	Corrosion Mechanisms in Refineries
	Uniform & Localized Corrosion • Pitting, Crevice Corrosion, & Galvanic
	Corrosion • Case Examples of Refinery Corrosion Failures • Mitigation Techniques
	& Material Selection
	High-Temperature Corrosion
0830 - 0930	Oxidation & Sulfidation • Metal Dusting • Carburization & Decarburization •
	Case Studies in Hydroprocessing Units
0930 - 0945	Break
	Hydrogen Damage
0945 – 1100	Hydrogen Embrittlement • High-Temperature Hydrogen Attack (HTHA) •
	Blistering & Cracking • Detection & Prevention Strategies
	Wear & Erosion Mechanisms
1100 – 1230	Abrasion, Erosion, & Cavitation • Impacts of Fluid Velocity & Particulates •
1100 - 1230	Material Behavior Under High Wear Conditions • Case Studies of Refinery
	Equipment Failures
1230 – 1245	Break
	Stress Corrosion Cracking (SCC)
1245 - 1330	Mechanisms & Contributing Factors • SCC in Carbon Steel & Stainless Steel •
	Methods of Detection & Control • Case Histories
	Lab Exercise: Corrosion Analysis Techniques
1230 - 1420	Surface Examination of Corroded Specimens • Corrosion Pit Measurement Using
1230 - 1420	Microscopy • Use of X-Ray Diffraction for Phase Analysis • Interpretation of
	Results
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
1420	
1430	Lunch & End of Day Two

Practography Basics of Fracture Surface Analysis • Identifying Overload, Fatigue, & Brittle Fractures • SEM Applications in Fractography • Case Examples of Fracture Evaluations0830 - 0930Microstructural Analysis Metallography Techniques & Etching • Interpreting Microstructures of Carbon & Alloy Steels • Heat-Affected Zones & Weld Failures • Case Studies0930 - 0945Break0945 - 1100Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation1100 - 1230Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery Equipment	Day 3:	Tuesday, 08 th of July 2025
0730 - 0830Fractures • SEM Applications in Fractography • Case Examples of Fracture Evaluations0830 - 0930Microstructural Analysis Metallography Techniques & Etching • Interpreting Microstructures of Carbon & Alloy Steels • Heat-Affected Zones & Weld Failures • Case Studies0930 - 0945Break0945 - 1100Chemical Analysis Techniques Analysis Using EDS • Practical Session on Alloy Composition Identifiation1100 - 1230Residual Stress Analysis Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery	0730 - 0830	Fractography
FracturesSEM Applications in FractographyCase Examples of Fracture Evaluations0830 - 0930Microstructural Analysis Metallography Techniques & EtchingInterpreting Microstructures of Carbon & Alloy Steels0930 - 0945Break0945 - 1100Chemical Analysis Techniques Optical Emission Spectroscopy (OES)X-Ray Fluorescence (XRF)0945 - 1100Residual Stress Analysis Importance of Residual Stress in Failure MechanismsX-Ray Diffraction & Hole Drilling Methods1100 - 1230Importance of Residual Stress in Failure MechanismsX-Ray Diffraction in Refinery		Basics of Fracture Surface Analysis • Identifying Overload, Fatigue, & Brittle
Microstructural Analysis0830 - 0930Metallography Techniques & Etching • Interpreting Microstructures of Carbon & Alloy Steels • Heat-Affected Zones & Weld Failures • Case Studies0930 - 0945Break0945 - 1100Chemical Analysis Techniques Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation1100 - 1230Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Fractures • SEM Applications in Fractography • Case Examples of Fracture
0830 - 0930Metallography Techniques & Etching • Interpreting Microstructures of Carbon & Alloy Steels • Heat-Affected Zones & Weld Failures • Case Studies0930 - 0945Break0945 - 1100Chemical Analysis Techniques Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation1100 - 1230Residual Stress Analysis Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Evaluations
Alloy Steels • Heat-Affected Zones & Weld Failures • Case Studies 0930 - 0945 Break 0945 - 1100 Chemical Analysis Techniques 0945 - 1100 Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation 1100 - 1230 Residual Stress Analysis 1100 - 1230 Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery	0830 - 0930	Microstructural Analysis
0930 - 0945 Break 0945 - 1100 Chemical Analysis Techniques 0945 - 1100 Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation Residual Stress Analysis 1100 - 1230 Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Metallography Techniques & Etching • Interpreting Microstructures of Carbon &
0945 - 1100Chemical Analysis Techniques Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation1100 - 1230Residual Stress Analysis Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Alloy Steels • Heat-Affected Zones & Weld Failures • Case Studies
0945 - 1100Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental Analysis Using EDS • Practical Session on Alloy Composition Identifiation1100 - 1230 Residual Stress Analysis Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery	0930 - 0945	Break
Analysis Using EDS • Practical Session on Alloy Composition Identifiation Residual Stress Analysis 1100 – 1230 Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Chemical Analysis Techniques
Residual Stress Analysis 1100 – 1230 Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery	0945 - 1100	Optical Emission Spectroscopy (OES) • X-Ray Fluorescence (XRF) • Elemental
1100 - 1230Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Analysis Using EDS • Practical Session on Alloy Composition Identifiation
Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery	1100 - 1230	Residual Stress Analysis
Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery		Importance of Residual Stress in Failure Mechanisms • X-Ray Diffraction & Hole
Equipment		Drilling Methods • Interpretation of Stress Maps • Case Applications in Refinery
		Equipment

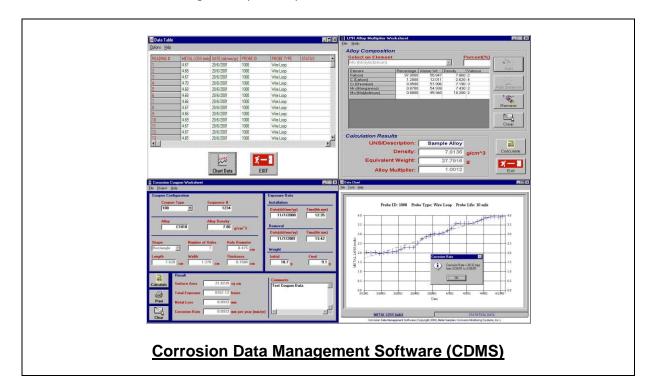
UKAS

1230 - 1245	Break
1245 - 1330	Nondestructive Examination (NDE) for Failure Analysis Magnetic Particle Inspection (MPI) • Ultrasonic Testing (UT) • Radiography (RT) & Eddy Current Testing (ECT) • Integration of NDE Results in Failure Investigations
1230 - 1420	Lab Session: Advanced Techniques Demonstration of SEM/EDS • Practical Use of OES & XRF • Analysis of Real- World Failure Samples
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

	Root Cause Analysis Methodologies
0730 - 0830	Fault Tree Analysis (FTA) • Ishikawa (Fishbone) Diagrams • Five Whys
	Technique • Practical Exercises
	Mechanical Failures in Refinery Equipment
0830 - 0930	Failures in Pressure Vessels & Piping • Rotating Equipment & Pump Failures •
	Heat Exchanger Failures • Case Studies & Lessons Learned
0930 - 0945	Break
	Welding & Fabrication Defects
0945 – 1100	Common Welding Flaws (e.g., Porosity, Cracks) • Inspection Techniques for Weld
	Quality • Case Examples of Weld Failures • Repair & Prevention Strategies
	Failures in Specific Refinery Units
1100 – 1230	Hydrocracker & Catalytic Reformer Units • Crude Distillation Column Failures •
	Delayed Coker Unit Case Studies • Mitigation & Design Improvements
1230 – 1245	Break
	Case Study Analysis
1245 - 1330	Group Exercise on Real-World Failure Investigations • Identification of Room
	Causes • Recommendations & Preventive Measures • Presentation & Discussion
1230 - 1420	Hands-On Session: Mock RCA Exercise
	Analyze a Provided Failure Scenario • Apply RCA Tools to Identify Issues •
	Develop a Failure Analysis Report
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5:	Thursday, 10 th of July 2025
0730 - 0830	Failure Prevention Strategies
	Material Selection & Design Considerations • Process Control & Monitoring •
	Inspection & Maintenance Best Practices • Real-World Examples
0830 - 0930	Repair & Remediation Methods
	Welding & Heat Treatment for Repairs • Coating & Cladding Solutions •
	Replacement versus Repair Decision-Making • Standards & Guidelines

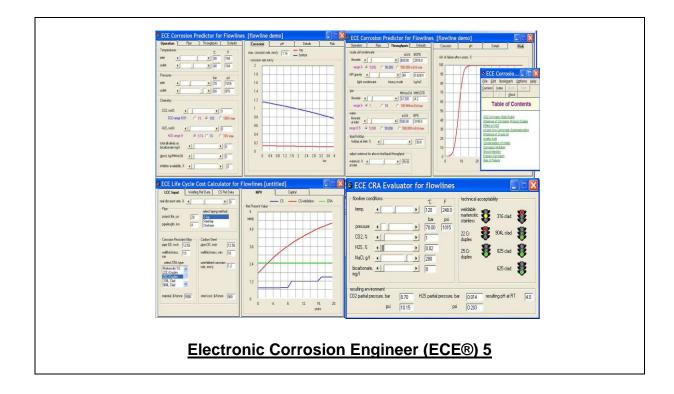
UKAS



0930 - 0945	Break
0945 - 1100	Developing Failure Analysis Reports
	Structure & Key Components of a Report • Visual Aids: Photos, Diagrams, &
	Charts • Common Pitfalls in Reporting • Peer Review & Communication
	Strategies
	Continuous Improvement in Asset Integrity
1100 1000	Learning from Past Failures • Integrating Failure Analysis into Asset
1100 – 1230	Management • Collaboration with Design & Operation Teams • Refinery Best
	Practices for Integrity Management
1230 – 1245	Break
	Emerging Trends in Failure Analysis
1245 - 1345	AI & Machine Learning in Failure Prediction • Advances in NDE Technologies •
	Industry 4.0 & Digital Twins • Future Challenges & Opportunities
1345 - 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulators "Corrosion Data Management Software (CDMS)" and "Electronic Corrosion Engineer (ECE®) 5".



FE0111 - Page 8 of 9

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0111 - Page 9 of 9

